

Agilent B1505A Power Device Analyzer/Curve Tracer

Data Sheet

Introduction

The B1505A Power Device Analyzer/ Curve Tracer is a single-box solution with next-generation curve tracer functionality that can accurately evaluate and characterize power devices at up to 10 kV and 1500 amps. The B1505A is capable of handling all types of power device evaluation, with features that include a wide voltage and current range, fast pulsing capability ($10 \mu \mathrm{~s}$), $\mu \Omega$ level on-resistance measurement resolution and sub-pA level current measurement capability. In addition, an oscilloscope view permits visual verification of both current and voltage pulsed waveforms.

Two independent analog-to-digital (A/D) converters on each channel support a $2 \mu \mathrm{~s}$ sampling rate for accurate monitoring of the critical timings that can affect device behavior.

It can also perform capacitance measurements at high voltage biases (up to 3000 V). The B1505A with EasyEXPERT software includes a curve tracer mode that combines familiar curve tracer functionality with the convenience of a PC-based instrument; this makes it easy for traditional curve-tracer users to
become productive quickly. Module selector and Quick Test feature enable fully automated measurement on multiple parameters without the need to recable. The net result is improved ease of use, better data analysis and simplified data management for the measurement of power devices and power circuitry.

Basic features

- Performs wide range of IV measurements
- Up to $10 \mathrm{kV} / 1500 \mathrm{~A}$
- Large peak power : 22.5 kW
- Medium current measurement with high voltage bias (e.g. 500 mA at 1200 V , Peak power : 900 W)
- $\mu \Omega$ resistance measurement
- sub-pA leakage measurement
- Performs high bias voltage CV measurements
- Pulsed measurement ($\geq 10 \mu \mathrm{~s}$)
- Two independent A/D converters (22 bit equivalent) on each channel enable the simultaneous highspeed ($2 \mu \mathrm{~s}$) sampling of current and voltage
- Temperature measurement
- Easy to use EasyEXPERT test environment
- Curve tracer test mode with knob sweep capability
- Oscilloscope view
- Modular configuration with ten module slots for supported modules
- Multiple SMU types available: HPSMU, MPSMU, HCSMU, MCSMU and HVSMU
- Support for high power devices with up to 6 pins
- Fast high voltage/high current switch for GaN current collapse effect characterization
- Multi-frequency capacitance measurement unit (MFCMU) (1 kHz to 5 MHz) available
- Standard accessories for package test and wafer test: test fixture, module selector and high voltage bias-tee
- 4.2-amp ground unit included standard with the mainframe
- GPIB port for instrument control
- Self-test, self-calibration, diagnostics

Specification conditions

The measurement and output accuracy are specified under the conditions listed below. Note: The SMU measurement and output accuracies are specified at the SMU connector terminals, using the Zero Check terminal as a reference.

1. Temperature: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
2. Humidity: 20% to 70%
3. Self-calibration after a 40 minute warm-up is required.
4. Ambient temperature change less than $\pm 1^{\circ} \mathrm{C}$ after self-calibration execution. (Note: This does not apply to the MFCMU).
5. Measurement made within one hour after self-calibration execution. (Note: This does not apply to the MFCMU).
6. Calibration period: 1 year
7. SMU integration time setting: 1 PLC (1 nA to 1 A range, voltage range), $200 \mu \mathrm{~s}$ (20 A range) Averaging of high-speed ADC: 128 samples per 1 PLC
8. SMU filter: ON (for HPSMU and MPSMU)
9. SMU measurement terminal connection: Kelvin connection (for HPSMU, MPSMU, HCSMU and MCSMU), non-Kelvin (for HVSMU)

Note: This document lists specifications and supplemental characteristics for the B1505A and its associated modules. The specifications are the standards against which the B1505A and its associated modules are tested. When the B1505A or any of its associated modules are shipped from the factory, they meet the specifications. The "supplemental" characteristics described in the following specifications are not guaranteed, but provide useful information about the functions and performance of the instrument.

Note: Module upgrades to existing B1505A systems must be carried out at an Agilent Technologies service centre. In order to ensure system specifications the new modules need to be installed and the complete unit calibrated. Contact your nearest Agilent Technologies office to arrange the installation and calibration of new B1505A modules.

B1505A Specifications

Supported plug-In modules				
The B1505A supports ten slots for plug-in modules.				
Part number	Description	Slots occupied	Range of operation	Measure resolution
B1510A	High Power Source Monitor Unit (HPSMU)	2	-200 V to $200 \mathrm{~V},-1 \mathrm{~A}$ to 1 A	$2 \mu \mathrm{~V}$, 10 f A
B1511A	Medium Power Source Monitor Unit (MPSMU)	1	-100 V to $100 \mathrm{~V},-100 \mathrm{~mA}$ to 100 mA	$0.5 \mu \mathrm{~V}, 10$ fA
B1512A	High Current Source Monitor Unit (HCSMU)	2	-40 V to $40 \mathrm{~V},-1 \mathrm{~A}$ to 1 A -20 V to 20 V , -20 A to 20 A (Pulse only)	$200 \mathrm{nV}, 10 \mathrm{pA}$
B1513B	High Voltage Source Monitor Unit (HVSMU)	2	-3000 V to 3000 V , -4 mA to 4 mA -1500 V to $1500 \mathrm{~V},-8 \mathrm{~mA}$ to 8 mA	$200 \mu \mathrm{~V}, 10 \mathrm{fA}$
B1514A	Medium Current Source Monitor Unit (MCSMU)	1	-30 V to $30 \mathrm{~V},-100 \mathrm{~mA}$ to 100 mA -30 V to $30 \mathrm{~V},-1 \mathrm{~A}$ to 1 A (Pulse only)	$200 \mathrm{nV}, 10 \mathrm{pA}$
$\mathrm{B}^{\text {1520A }}{ }^{1}$	Multi Frequency Capacitance Measurement Unit (MFCMU)	1	1 kHz to 5 MHz	$0.035 \mathrm{fFrms}^{2}$
1. N1300A- 2. Valid wh a signal	00 SMU CMU Unify Unit (SCUU) is not supported for the n connecting a 10 pF capacitor to the measurement term vel of 250 mV AC, and a measurement time of 1 PLC. Th	505A. Is under the lisplay resolu	ollowing measurement conditions: a frequency is is 0.000001 fF at 1 fF order by 6 digits display.	1 MHz ,

Maximum module configuration
The total power consumption of all modules cannot exceed 84 W . Under this rule, the B1505A can contain any combination of the following SMUs:

- Up to 4 dual-slot HPSMUs ${ }^{1}$
- Up to 10 single-slot MPSMUs
- Up to 2 dual-slot HCSMUs ${ }^{1}$
- Up to 6 single-slot MCSMUs
- 1 dual-slot HVSMU

1. The total number of installed HPSMU and HCSMU modules cannot exceed 4.

In addition, up to 1 single-slot MFCMU can be installed per B1505A mainframe for any of the above listed SMU configurations.
The installation order of the modules is: HPSMU, MPSMU, MFCMU, MCSMU, HCSMU and HVSMU starting from the bottom of the B1505A mainframe.

Maximum voltage between Common and Ground
$\leq \pm 42 \mathrm{~V}$

Ground unit (GNDU) specifications

The GNDU is furnished with the B1505A mainframe.

Output voltage: $0 \mathrm{~V} \pm 100 \mu \mathrm{~V}$
Maximum sink current: $\pm 4.2 \mathrm{~A}$
Output terminal/connection:
Triaxial connector, Kelvin
(remote sensing)
GNDU supplemental characteristics
Load capacitance: $1 \mu \mathrm{~F}$
Cable resistance:
For $\mathrm{I}_{\mathrm{s}} \leq 1.6 \mathrm{~A}$: Force line $\mathrm{R}<1 \Omega$
For $1.6 \mathrm{~A}<\mathrm{I}_{\mathrm{s}} \leq 2.0 \mathrm{~A}$: Force line R
$<0.7 \Omega$
For $2.0 \mathrm{~A}<\mathrm{I}_{\mathrm{s}} \leq 4.2 \mathrm{~A}$: Force line R $<0.35 \Omega$
For all cases: Sense line $R \leq 10 \Omega$
Where I_{S} is the current being sunk by the GNDU.

Voltage range, resolution, and accuracy (high resolution ADC)					
Voltage range	Force resolution	Measure resolution	Force accuracy ${ }^{1}$ $\pm(\%+m V)$	Measure accuracy ${ }^{1}$ $\pm(\%+m V)$	Maximum current
$\pm 2 \mathrm{~V}$	$100 \mu \mathrm{~V}$	$2 \mu \mathrm{~V}$	$\pm(0.018+0.4)$	$\pm(0.01+0.14)$	1 A
$\pm 20 \mathrm{~V}$	1 mV	$20 \mu \mathrm{~V}$	$\pm(0.018+3)$	$\pm(0.01+0.14)$	1 A
$\pm 40 \mathrm{~V}$	2 mV	$40 \mu \mathrm{~V}$	$\pm(0.018+6)$	$\pm(0.01+1)$	500 mA
$\pm 100 \mathrm{~V}$	5 mV	$100 \mu \mathrm{~V}$	$\pm(0.018+15)$	$\pm(0.012+2.5)$	125 mA
$\pm 200 \mathrm{~V}$	10 mV	$200 \mu \mathrm{~V}$	$\pm(0.018+30)$	$\pm(0.014+2.8)$	50 mA

1. \pm (\% of reading value + offset value in $m V)$

Current range, resolution, and accuracy (high resolution ADC)

Current range	Force resolution	Measure resolution	Force accuracy ${ }^{1}$ $\pm(\%+A+A)$	Measure accuracy ${ }^{1}$ $\pm(\%+A+A)$	Maximum voltage
$\pm 1 \mathrm{nA}$	50 fA	10 fA	$\pm(0.1+3 \mathrm{E}-13+\mathrm{Vox} 1 \mathrm{E}-15)$	$\pm(0.1+3 \mathrm{E}-13+\mathrm{Vox} 1 \mathrm{E}-15)$	200 V
$\pm 10 \mathrm{nA}$	500 fA	10 fA	$\pm(0.1+3 \mathrm{E}-12+\mathrm{Vox} 1 \mathrm{E}-14)$	$\pm(0.1+25 \mathrm{E}-13+\mathrm{Vox} 1 \mathrm{E}-14)$	200 V
$\pm 100 \mathrm{nA}$	5 pA	100 fA	$\pm(0.05+3 \mathrm{E}-11+\mathrm{Vox} 1 \mathrm{E}-13)$	$\pm(0.05+25 \mathrm{E}-12+\mathrm{Vo} \times 1 \mathrm{E}-13)$	200 V
$\pm 1 \mu \mathrm{~A}$	50 pA	1 pA	$\pm(0.05+3 \mathrm{E}-10+\mathrm{Vox} 1 \mathrm{E}-12)$	$\pm(0.05+1 \mathrm{E}-10+\mathrm{Vox} 1 \mathrm{E}-12)$	200 V
$\pm 10 \mu \mathrm{~A}$	500 pA	10 pA	$\pm(0.05+3 \mathrm{E}-9+\mathrm{Vo} \times 1 \mathrm{E}-11)$	$\pm(0.04+2 \mathrm{E}-9+\mathrm{Vox} 1 \mathrm{E}-11)$	200 V
$\pm 100 \mu \mathrm{~A}$	5 nA	100 pA	$\pm(0.035+15 \mathrm{E}-9+\mathrm{Vo} \times 1 \mathrm{E}-10)$	$\pm(0.03+3 \mathrm{E}-9+\mathrm{Vo} \times 1 \mathrm{E}-10)$	200 V
$\pm 1 \mathrm{~mA}$	50 nA	1 nA	$\pm(0.04+15 \mathrm{E}-8+\mathrm{Vox} 1 \mathrm{E}-9)$	$\pm(0.03+6 \mathrm{E}-8+\mathrm{Vox} 1 \mathrm{E}-9)$	200 V
$\pm 10 \mathrm{~mA}$	500 nA	10 nA	$\pm(0.04+15 \mathrm{E}-7+\mathrm{Vo} \times 1 \mathrm{E}-8)$	$\pm(0.03+2 \mathrm{E}-7+\mathrm{Vo} \times 1 \mathrm{E}-8)$	200 V
$\pm 100 \mathrm{~mA}$	$5 \mu \mathrm{~A}$	100 nA	$\pm(0.045+15 \mathrm{E}-6+\mathrm{Vo} \times 1 \mathrm{E}-7)$	$\pm(0.04+6 \mathrm{E}-6+\mathrm{Vox} 1 \mathrm{E}-7)$	$200 \mathrm{~V}^{2}$
$\pm 1 \mathrm{~A}$	$50 \mu \mathrm{~A}$	$1 \mu \mathrm{~A}$	$\pm(0.4+3 \mathrm{E}-4+\mathrm{Vo} \times 1 \mathrm{E}-6)$	$\pm(0.4+15 \mathrm{E}-5+\mathrm{Vo} \times 1 \mathrm{E}-6)$	$200 \mathrm{~V}^{2}$
1. \pm (\% of reading value + fixed offset in $\mathrm{A}+$ proportional offset in A$)$, Vo is the output voltage in V.)					
2. $200 \mathrm{~V}(10 \leq 50 \mathrm{~m}$	$100 \mathrm{~V}(50 \mathrm{~mA}$	$\leq 125 \mathrm{~mA}), 40$	25mA < $10 \leq 500 \mathrm{~mA}$), $20 \mathrm{~V}(500 \mathrm{~mA}$	$10 \leq 1 \mathrm{~A})$, lo is the output current in	

Voltage range, resolution, and accuracy (high speed ADC)

Voltage range	Force resolution	Measure resolution	Force accuracy ${ }^{1}$ $\pm(\%+m V)$	Measure accuracy ${ }^{1}$ $\pm(\%+m V)$	Maximum current
$\pm 2 \mathrm{~V}$	$100 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$	$\pm(0.018+0.4)$	$\pm(0.01+0.7)$	1 A
$\pm 20 \mathrm{~V}$	1 mV	1 mV	$\pm(0.018+3)$	$\pm(0.01+4)$	1 A
$\pm 40 \mathrm{~V}$	2 mV	2 mV	$\pm(0.018+6)$	$\pm(0.015+8)$	500 mA
$\pm 100 \mathrm{~V}$	5 mV	5 mV	$\pm(0.018+15)$	$\pm(0.02+20)$	125 mA
$\pm 200 \mathrm{~V}$	10 mV	10 mV	$\pm(0.018+30)$	$\pm(0.035+40)$	50 mA

1. $\pm(\%$ of reading value + offset value in $m V)$. Averaging is 128 samples in 1 PLC.

Current range, resolution, and accuracy (high speed ADC)

Current range	Force resolution	Measure resolution	Force accuracy ${ }^{1}$ $\pm(\%+A+A)$	Measure accuracy ${ }^{1}$ $\pm(\%+A+A)$	Maximum voltage
$\pm 1 \mathrm{nA}$	50 fA	50 fA	$\pm(0.1+3 \mathrm{E}-13+\mathrm{Vo} \times 1 \mathrm{E}-15)$	$\pm(0.25+3 \mathrm{E}-13+\mathrm{Vo} \times 1 \mathrm{E}-15)$	200 V
$\pm 10 \mathrm{nA}$	500 fA	500 fA	$\pm(0.1+3 \mathrm{E}-12+\mathrm{Vo} \times 1 \mathrm{E}-14)$	$\pm(0.25+2 \mathrm{E}-12+\mathrm{Vo} \times 1 \mathrm{E}-14)$	200 V
$\pm 100 \mathrm{nA}$	5 pA	5 pA	$\pm(0.05+3 \mathrm{E}-11+\mathrm{Vo} \times 1 \mathrm{E}-13)$	$\pm(0.1+2 \mathrm{E}-11+\mathrm{Vo} \times 1 \mathrm{E}-13)$	200 V
$\pm 1 \mu \mathrm{~A}$	50 pA	50 pA	$\pm(0.05+3 \mathrm{E}-10+\mathrm{Vo} \times 1 \mathrm{E}-12)$	$\pm(0.1+2 \mathrm{E}-10+\mathrm{Vo} \times 1 \mathrm{E}-12)$	200 V
$\pm 10 \mu \mathrm{~A}$	500 pA	500 pA	$\pm(0.05+3 \mathrm{E}-9+\mathrm{Vo} \times 1 \mathrm{E}-11)$	$\pm(0.05+2 \mathrm{E}-9+\mathrm{Vo} \times 1 \mathrm{E}-11)$	200 V
$\pm 100 \mu \mathrm{~A}$	5 nA	5 nA	$\pm(0.035+15 \mathrm{E}-9+\mathrm{Vo} \times 1 \mathrm{E}-10)$	$\pm(0.05+2 \mathrm{E}-8+\mathrm{Vo} \times 1 \mathrm{E}-10)$	200 V
$\pm 1 \mathrm{~mA}$	50 nA	50 nA	$\pm(0.04+15 \mathrm{E}-8+\mathrm{Vo} \times 1 \mathrm{E}-9)$	$\pm(0.04+2 \mathrm{E}-7+\mathrm{Vo} \times 1 \mathrm{E}-9)$	200 V
$\pm 10 \mathrm{~mA}$	500 nA	500 nA	$\pm(0.04+15 \mathrm{E}-7+\mathrm{Vo} \times 1 \mathrm{E}-8)$	$\pm(0.04+2 \mathrm{E}-6+\mathrm{Vo} \times 1 \mathrm{E}-8)$	200 V
$\pm 100 \mathrm{~mA}$	$5 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	$\pm(0.045+15 \mathrm{E}-6+\mathrm{Vo} \times 1 \mathrm{E}-7)$	$\pm(0.1+2 \mathrm{E}-5+\mathrm{Vo} \times 1 \mathrm{E}-7)$	$200 \mathrm{~V}^{2}$
$\pm 1 \mathrm{~A}$	$50 \mu \mathrm{~A}$	$50 \mu \mathrm{~A}$	$\pm(0.4+3 \mathrm{E}-4+\mathrm{Vo} \times 1 \mathrm{E}-6)$	$\pm(0.5+3 \mathrm{E}-4+\mathrm{Vo} \times 1 \mathrm{E}-6)$	$200 \mathrm{~V}^{2}$

1. $\pm(\%$ of reading value + fixed offset in $A+$ proportional offset in $A)$, Vo is the output voltage in V.)
2. $200 \mathrm{~V}(10 \leq 50 \mathrm{~mA}), 100 \mathrm{~V}(50 \mathrm{~mA}<10 \leq 125 \mathrm{~mA}), 40 \mathrm{~V}(125 \mathrm{~mA}<10 \leq 500 \mathrm{~mA}), 20 \mathrm{~V}(500 \mathrm{~mA}<10 \leq 1 \mathrm{~A})$, lo is the output current in Amps.
Power consumption

Voltage source mode:	
Voltage range	Power
2 V	$20 \times \mathrm{Ic}(\mathrm{W})$
20 V	$20 \times \mathrm{Ic}(\mathrm{W})$
40 V	$40 \times \mathrm{Ic}(\mathrm{W})$
100 V	$100 \times \mathrm{Ic}(\mathrm{W})$
200 V	$200 \times \mathrm{Ic}(\mathrm{W})$

Where Ic is the current compliance setting.

Current source mode:

Voltage compliance	Power
$\mathrm{Vc} \leq 20$	$20 \times$ lo (W)
$20<\mathrm{Vc} \leq 40$	$40 \times$ lo (W)
$40<\mathrm{Vc} \leq 100$	$100 \times$ lo (W)
$100<\mathrm{Vc} \leq 200$	$200 \times$ lo (W)

Where Vc is the voltage compliance setting and lo is output current.

HPSMU measurement and output range

MPSMU Module Specifications

Voltage range, resolution, and accuracy (high resolution ADC)					
Voltage range	Force resolution	Measure resolution	Force accuracy ${ }^{1}$ $\pm(\%+m V)$	Measure accuracy ${ }^{1}$ $\pm(\%+m V)$	Maximum current
$\pm 0.5 \mathrm{~V}$	$25 \mu \mathrm{~V}$	$0.5 \mu \mathrm{~V}$	$\pm(0.018+0.15)$	$\pm(0.01+0.12)$	100 mA
$\pm 2 \mathrm{~V}$	$100 \mu \mathrm{~V}$	$2 \mu \mathrm{~V}$	$\pm(0.018+0.4)$	$\pm(0.01+0.14)$	100 mA
$\pm 5 \mathrm{~V}$	$250 \mu \mathrm{~V}$	$5 \mu \mathrm{~V}$	$\pm(0.018+0.75)$	$\pm(0.009+0.25)$	100 mA
$\pm 20 \mathrm{~V}$	1 mV	$20 \mu \mathrm{~V}$	$\pm(0.018+3)$	$\pm(0.01+0.9)$	100 mA
$\pm 40 \mathrm{~V}$	2 mV	$40 \mu \mathrm{~V}$	$\pm(0.018+6)$	$\pm(0.01+1)$	2
$\pm 100 \mathrm{~V}$	5 mV	$100 \mu \mathrm{~V}$	$\pm(0.018+15)$	$\pm(0.012+2.5)$	2

2. $100 \mathrm{~mA}(\mathrm{Vo} \leq 20 \mathrm{~V}), 50 \mathrm{~mA}(20 \mathrm{~V}<\mathrm{Vo} \leq 40 \mathrm{~V}), 20 \mathrm{~mA}(40 \mathrm{~V}<\mathrm{Vo} \leq 100 \mathrm{~V})$, Vo is the output voltage in Volts.

Current range, resolution, and accuracy (high resolution ADC)

Current range	Force resolution	Measure resolution	Force accuracy ${ }^{1}$ $\pm(\%+A+A)$	Measure accuracy ${ }^{1}$ $\pm(\%+A+A)$	Maximum voltage
$\pm 1 \mathrm{nA}$	50 fA	10 fA	$\pm(0.1+3 \mathrm{E}-13+\mathrm{Vo} \times 1 \mathrm{E}-15)$	$\pm(0.1+2 \mathrm{E}-13+\mathrm{Vo} \times 1 \mathrm{E}-15)$	100 V
$\pm 10 \mathrm{nA}$	500 fA	10 fA	$\pm(0.1+3 \mathrm{E}-12+\mathrm{Vo} \times 1 \mathrm{E}-14)$	$\pm(0.1+1 \mathrm{E}-12+\mathrm{Vo} \times 1 \mathrm{E}-14)$	100 V
$\pm 100 \mathrm{nA}$	5 pA	100 fA	$\pm(0.05+3 \mathrm{E}-11+\mathrm{Vo} \times 1 \mathrm{E}-13)$	$\pm(0.05+2 \mathrm{E}-11+\mathrm{Vo} \times 1 \mathrm{E}-13)$	100 V
$\pm 1 \mu \mathrm{~A}$	50 pA	1 pA	$\pm(0.05+3 \mathrm{E}-10+\mathrm{Vo} \times 1 \mathrm{E}-12)$	$\pm(0.05+1 \mathrm{E}-10+\mathrm{Vo} \times 1 \mathrm{E}-12)$	100 V
$\pm 10 \mu \mathrm{~A}$	500 pA	10 pA	$\pm(0.05+3 \mathrm{E}-9+\mathrm{Vo} \times 1 \mathrm{E}-11)$	$\pm(0.04+2 \mathrm{E}-9+\mathrm{Vo} \times 1 \mathrm{E}-11)$	100 V
$\pm 100 \mu \mathrm{~A}$	5 nA	100 pA	$\pm(0.035+15 \mathrm{E}-9+\mathrm{Vo} \times 1 \mathrm{E}-10)$	$\pm(0.03+3 \mathrm{E}-9+\mathrm{Vo} \times 1 \mathrm{E}-10)$	100 V
$\pm 1 \mathrm{~mA}$	50 nA	1 nA	$\pm(0.04+15 \mathrm{E}-8+\mathrm{Vo} \times 1 \mathrm{E}-9)$	$\pm(0.03+6 \mathrm{E}-8+\mathrm{Vo} \times 1 \mathrm{E}-9)$	100 V
$\pm 10 \mathrm{~mA}$	500 nA	10 nA	$\pm(0.04+15 \mathrm{E}-7+\mathrm{Vo} \times 1 \mathrm{E}-8)$	$\pm(0.03+2 \mathrm{E}-7+\mathrm{Vo} \times 1 \mathrm{E}-8)$	100 V
$\pm 100 \mathrm{~mA}$	$5 \mu \mathrm{~A}$	100 nA	$\pm(0.045+15 \mathrm{E}-6+\mathrm{Vo} \times 1 \mathrm{E}-7)$	$\pm(0.04+6 \mathrm{E}-6+\mathrm{Vo} \times 1 \mathrm{E}-7)$	2

1. \pm (\% of reading value + fixed offset in $A+$ proportional offset in $A)$, Vo is the output voltage in V.)
2. $100 \mathrm{~V}(10 \leq 20 \mathrm{~mA}), 40 \mathrm{~V}(20 \mathrm{~mA}<10 \leq 50 \mathrm{~mA}), 20 \mathrm{~V}(50 \mathrm{~mA}<10 \leq 100 \mathrm{~mA})$, lo is the output current in Amps.

Voltage range, resolution, and accuracy (high speed ADC)

Voltage range	Force resolution	Measure resolution	Force accuracy ${ }^{1}$ $\pm(\%+m V)$	Measure accuracy ${ }^{1}$ $\pm(\%+m V)$	Maximum current
$\pm 0.5 \mathrm{~V}$	$25 \mu \mathrm{~V}$	$25 \mu \mathrm{~V}$	$\pm(0.018+0.15)$	$\pm(0.01+0.25)$	100 mA
$\pm 2 \mathrm{~V}$	$100 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$	$\pm(0.018+0.4)$	$\pm(0.01+0.7)$	100 mA
$\pm 5 \mathrm{~V}$	$250 \mu \mathrm{~V}$	$250 \mu \mathrm{~V}$	$\pm(0.018+0.75)$	$\pm(0.01+2)$	100 mA
$\pm 20 \mathrm{~V}$	1 mV	1 mV	$\pm(0.018+3)$	$\pm(0.01+4)$	100 mA
$\pm 40 \mathrm{~V}$	2 mV	2 mV	$\pm(0.018+6)$	$\pm(0.015+8)$	2
$\pm 100 \mathrm{~V}$	5 mV	5 mV	$\pm(0.018+15)$	$\pm(0.02+20)$	2

1. $\pm(\%$ of reading value + offset value in $m V)$. Averaging is 128 samples in 1 PLC.
2. $100 \mathrm{~mA}(\mathrm{Vo} \leq 20 \mathrm{~V}), 50 \mathrm{~mA}(20 \mathrm{~V}<\mathrm{Vo} \leq 40 \mathrm{~V}), 20 \mathrm{~mA}(40 \mathrm{~V}<\mathrm{Vo} \leq 100 \mathrm{~V})$, Vo is the output voltage in Volts.

Current range, resolution, and accuracy (high speed ADC)

Current range	Force resolution	Measure resolution	Force accuracy ${ }^{1}$ $\pm(\%+\mathrm{A}+\mathrm{A})$	Measure accuracy ${ }^{1}$ $\pm(\%+\mathrm{A}+\mathrm{A})$	Maximum voltage
$\pm 1 \mathrm{nA}$	50 fA	50 fA	$\pm(0.1+3 \mathrm{E}-13+\mathrm{Vo} \times 1 \mathrm{E}-15)$	$\pm(0.25+3 \mathrm{E}-13+\mathrm{Vo} \times 1 \mathrm{E}-15)$	100 V
$\pm 10 \mathrm{nA}$	500 fA	500 fA	$\pm(0.1+3 \mathrm{E}-12+\mathrm{Vo} \times 1 \mathrm{E}-14)$	$\pm(0.25+2 \mathrm{E}-12+\mathrm{Vo} \times 1 \mathrm{E}-14)$	100 V
$\pm 100 \mathrm{nA}$	5 pA	5 pA	$\pm(0.05+3 \mathrm{E}-11+\mathrm{Vo} \times 1 \mathrm{E}-13)$	$\pm(0.1+2 \mathrm{E}-11+\mathrm{Vo} \times 1 \mathrm{E}-13)$	100 V
$\pm 1 \mu \mathrm{~A}$	50 pA	50 pA	$\pm(0.05+3 \mathrm{E}-10+\mathrm{Vo} \times 1 \mathrm{E}-12)$	$\pm(0.1+2 \mathrm{E}-10+\mathrm{Vo} \times 1 \mathrm{E}-12)$	100 V
$\pm 10 \mu \mathrm{~A}$	500 pA	500 pA	$\pm(0.05+3 \mathrm{E}-9+\mathrm{Vo} \times 1 \mathrm{E}-11)$	$\pm(0.05+2 \mathrm{E}-9+\mathrm{Vo} \times 1 \mathrm{E}-11)$	100 V
$\pm 100 \mu \mathrm{~A}$	5 nA	5 nA	$\pm(0.035+15 \mathrm{E}-9+\mathrm{Vo} \times 1 \mathrm{E}-10)$	$\pm(0.05+2 \mathrm{E}-8+\mathrm{Vo} \times 1 \mathrm{E}-10)$	100 V
$\pm 1 \mathrm{~mA}$	50 nA	50 nA	$\pm(0.04+15 \mathrm{E}-8+\mathrm{Vo} \times 1 \mathrm{E}-9)$	$\pm(0.04+2 \mathrm{E}-7+\mathrm{Vo} \times 1 \mathrm{E}-9)$	100 V
$\pm 10 \mathrm{~mA}$	500 nA	500 nA	$\pm(0.04+15 \mathrm{E}-7+\mathrm{Vo} \times 1 \mathrm{E}-8)$	$\pm(0.04+2 \mathrm{E}-6+\mathrm{Vo} \times 1 \mathrm{E}-8)$	100 V
$\pm 100 \mathrm{~mA}$	$5 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	$\pm(0.045+15 \mathrm{E}-6+\mathrm{Vo} \times 1 \mathrm{E}-7)$	$\pm(0.1+2 \mathrm{E}-5+\mathrm{Vo} \times 1 \mathrm{E}-7)$	2

1. $\pm(\%$ of reading value + fixed offset in $A+$ proportional offset in $A)$, Vo is the output voltage in V.)
2. $100 \mathrm{~V}(10 \leq 20 \mathrm{~mA}), 40 \mathrm{~V}(20 \mathrm{~mA}<10 \leq 50 \mathrm{~mA}), 20 \mathrm{~V}(50 \mathrm{~mA}<10 \leq 100 \mathrm{~mA})$, lo is the output current in Amps.

Power consumption
Voltage source mode:
Voltage range
0.5 V
2 V
5 V
20 V
40 V
100 V

Where Ic is the current compliance setting.

Current source mode:

Voltage compliance	Power
$\mathrm{Vc} \leq 20$	$20 \times$ lo (W)
$20<\mathrm{Vc} \leq 40$	$40 \times$ lo (W)
$40<\mathrm{Vc} \leq 100$	$100 \times$ lo (W)

Where Vc is the voltage compliance setting and lo is output current.

MPSMU measurement and output range

HCSMU Module Specifications

Voltage range, resolution, and accuracy					
Voltage range	Force resolution	Measure resolution	Force accuracy ${ }^{1}$ $\pm(\%+m V+m V)$	Measure accuracy ${ }^{1}$ $(\%+m V+m V)$	Maximum current
$\pm 0.2 \mathrm{~V}$	200 nV	200 nV	$\pm(0.06+0.14+\mathrm{lox} 0.05)$	$\pm(0.06+0.14+\mathrm{lo} \mathrm{x} \mathrm{0.05)}$	20 A
$\pm 2 \mathrm{~V}$	$2 \mu \mathrm{~V}$	$2 \mu \mathrm{~V}$	$\pm(0.06+0.6+\mathrm{lox} 0.5)$	$\pm(0.06+0.6+\mathrm{lo} \mathrm{x} \mathrm{0.5)}$	20 A
$\pm 20 \mathrm{~V}$	$20 \mu \mathrm{~V}$	$20 \mu \mathrm{~V}$	$\pm(0.06+3+10 \times 5)$	$\pm(0.06+3+10 \times 5)$	20 A
$\pm 40 \mathrm{~V}$	$40 \mu \mathrm{~V}$	$40 \mu \mathrm{~V}$	$\pm(0.06+3+10 \times 10)$	$\pm(0.06+3+10 \times 10)$	1 A

1. $\pm(\%$ of reading value + fixed offset in $m V+$ proportional offset in $m V)$. Note: lo is the output current in A.

Current range, resolution, and accuracy					
Current range	Force resolution	Measure resolution	Force accuracy ${ }^{1}$ $(\%+A+A)$	Measure accuracy ${ }^{1}$ $(\%+A+A)$	Maximum voltage
$\pm 10 \mu \mathrm{~A}$	10 pA	10 pA	$\pm(0.06+2 \mathrm{E}-9+\mathrm{Vo} \times 1 \mathrm{E}-10)$	$\pm(0.06+2 \mathrm{E}-9+\mathrm{Vo} \times 1 \mathrm{E}-10)$	40 V
$\pm 100 \mu \mathrm{~A}$	100 pA	100 pA	$\pm(0.06+2 \mathrm{E}-8+\mathrm{Vox} 1 \mathrm{E}-9)$	$\pm(0.06+2 \mathrm{E}-8+\mathrm{Vox} 1 \mathrm{E}-9)$	40 V
$\pm 1 \mathrm{~mA}$	1 nA	1 nA	$\pm(0.06+2 \mathrm{E}-7+\mathrm{Vox} 1 \mathrm{E}-8)$	$\pm(0.06+2 \mathrm{E}-7+\mathrm{Vox} 1 \mathrm{E}-8)$	40 V
$\pm 10 \mathrm{~mA}$	10 nA	10 nA	$\pm(0.06+2 \mathrm{E}-6+\mathrm{Vox} 1 \mathrm{E}-7)$	$\pm(0.06+2 \mathrm{E}-6+\mathrm{Vox} 1 \mathrm{E}-7)$	40 V
$\pm 100 \mathrm{~mA}$	100 nA	100 nA	$\pm(0.06+2 \mathrm{E}-5+\mathrm{Vox} 1 \mathrm{E}-6)$	$\pm(0.06+2 \mathrm{E}-5+\mathrm{Vox} 1 \mathrm{E}-6)$	40 V
$\pm 1 \mathrm{~A}$	$1 \mu \mathrm{~A}$	$1 \mu \mathrm{~A}$	$\pm(0.4+2 \mathrm{E}-4+\mathrm{Vox} 1 \mathrm{E}-5)$	$\pm(0.4+2 \mathrm{E}-4+\mathrm{Vox} 1 \mathrm{E}-5)$	40 V
$\pm 20 \mathrm{~A}^{2}$	$20 \mu \mathrm{~A}$	$20 \mu \mathrm{~A}$	$\pm(0.4+2 \mathrm{E}-3+\mathrm{Vox} 1 \mathrm{E}-4)$	$\pm(0.4+2 \mathrm{E}-3+\mathrm{Vox} 1 \mathrm{E}-4)$	20 V

1. $\pm(\%$ of reading value + fixed offset in $A+$ proportional offset in $A)$, Vo is the output voltage in V.
2. Pulse mode only.

Power consumption

Voltage source mode:	
Voltage range	Power
0.2 V	$40 \times \mathrm{Ic}(\mathrm{W})$
2 V	$40 \times \mathrm{Ic}(\mathrm{W})$
40 V	$40 \times \mathrm{Ic}(\mathrm{W})$

Where Ic is the current compliance setting. For pulse current, Ic = (duty) \times Ipulse

Current source mode:

Voltage compliance	Power
$\mathrm{Vc} \leq 0.2$	$40 \times \mathrm{lo}(\mathrm{W})$
$0.2<\mathrm{Vc} \leq 2$	$40 \times \mathrm{lo}(\mathrm{W})$
$2<\mathrm{Vc} \leq 40$	$40 \times \mathrm{lo}(\mathrm{W})$

Where Vc is the voltage compliance setting and lo is output current.
For pulse current, $\mathrm{lo}=$ (duty) \times Ipulse

Current range expansion

If two HCSMUs are combined using the Dual HCSMU combination adapter or the Dual HCSMU Kelvin combination adapter, then the maximum current ranges are 40A (Pulsed) and 2A (DC).

HCSMU measurement and output range

HVSMU Module Specifications

Voltage range, resolution, and accuracy					
Voltage range	Force resolution	Measure resolution	Force accuracy ${ }^{1}$ $\pm(\%+m V)$	Measure accuracy ${ }^{1}$ $\pm(\%+m V)$	Maximum current
$\pm 200 \mathrm{~V}$	$200 \mu \mathrm{~V}$	$200 \mu \mathrm{~V}$	$\pm(0.03+40)$	$\pm(0.03+40)$	8 mA
$\pm 500 \mathrm{~V}$	$500 \mu \mathrm{~V}$	$500 \mu \mathrm{~V}$	$\pm(0.03+100)$	$\pm(0.03+100)$	8 mA
$\pm 1500 \mathrm{~V}$	1.5 mV	1.5 mV	$\pm(0.03+300)$	$\pm(0.03+300)$	8 mA
$\pm 3000 \mathrm{~V}$	3 mV	3 mV	$\pm(0.03+600)$	$\pm(0.03+600)$	4 mA

Current range, resolution, and accuracy

Current range	Force resolution	Measure resolution	Force accuracy ${ }^{1}$ $\pm(\%+A+A)$	Measure accuracy ${ }^{1}$ $\pm(\%+A+A)$	Maximum voltage	Minimum set current ${ }^{2}$
$\pm 1 \mathrm{nA}$	10 fA	10 f A	$\pm(0.1+6 \mathrm{E}-13+\mathrm{Vo} \times 1 \mathrm{E}-15)$	$\pm(0.1+6 \mathrm{E}-13+\mathrm{Vo} \times 1 \mathrm{E}-15)$	3000 V	1pA
$\pm 10 \mathrm{nA}$	100 fA	100 fA	$\pm(0.1+25 \mathrm{E}-13+\mathrm{Vo} \times 1 \mathrm{E}-15)$	$\pm(0.1+25 \mathrm{E}-13+\mathrm{Vox} 1 \mathrm{E}-15)$	3000 V	1pA
$\pm 100 \mathrm{nA}$	100 fA	100 fA	$\pm(0.05+25 \mathrm{E}-12+\mathrm{Vox} 1 \mathrm{E}-13)$	$\pm(0.05+25 \mathrm{E}-12+\mathrm{Vox} 1 \mathrm{E}-13)$	3000 V	100 pA
$\pm 1 \mu \mathrm{~A}$	1 pA	1 pA	$\pm(0.05+1 \mathrm{E}-10+\mathrm{Vo} \times 1 \mathrm{E}-13)$	$\pm(0.05+1 \mathrm{E}-10+\mathrm{Vox} 1 \mathrm{E}-13)$	3000 V	100 pA
$\pm 10 \mu \mathrm{~A}$	10 pA	10 pA	$\pm(0.04+2 \mathrm{E}-9+\mathrm{Vox} 1 \mathrm{E}-11)$	$\pm(0.04+2 \mathrm{E}-9+\mathrm{Vox} 1 \mathrm{E}-11)$	3000 V	10 nA
$\pm 100 \mu \mathrm{~A}$	100 pA	100 pA	$\pm(0.03+3 \mathrm{E}-9+\mathrm{Vox} 1 \mathrm{E}-11)$	$\pm(0.03+3 \mathrm{E}-9+\mathrm{Vox} 1 \mathrm{E}-11)$	3000 V	10 nA
$\pm 1 \mathrm{~mA}$	1 nA	1 nA	$\pm(0.03+6 \mathrm{E}-8+\mathrm{Vo} \times 1 \mathrm{E}-10)$	$\pm(0.03+6 \mathrm{E}-8+\mathrm{Vo} \times 1 \mathrm{E}-10)$	3000 V	100 nA
$\pm 10 \mathrm{~mA}$	10 nA	10 nA	$\pm(0.03+2 \mathrm{E}-7+\mathrm{Vo} \times 1 \mathrm{E}-9)$	$\pm(0.03+2 \mathrm{E}-7+\mathrm{Vo} \times 1 \mathrm{E}-9)$	1500 V	$1 \mu \mathrm{~A}$

1. \pm (\%of reading value + fixed offset in $A+$ proportional offset in A), Vo is the output voltage in V.)
2. Output current needs to be set more than current shown in the table.

Power consumption

Voltage source mode:	
Current compliance	Power
$\mathrm{Ic} \leq 4 \mathrm{~m}$	$3000 \times \mathrm{Ic}(\mathrm{W})$
$4 \mathrm{~m}<\mathrm{Ic} \leq 8 \mathrm{~m}$	$1500 \times \mathrm{Ic}(\mathrm{W})$
W	

Where Ic is the current compliance setting.

Current source mode:	
Voltage compliance	Power
$\mathrm{Vc} \leq 1500$	$1500 \times \mathrm{lo}(\mathrm{W})$
$1500<\mathrm{Vc} \leq 3000$	$3000 \times \mathrm{lo}(\mathrm{W})$
Where Vc is the voltage compliance setting and lo is output current.	

HCSMU measurement and output range

MCSMU Module Specifications

Voltage range, resolution, and accuracy					
Voltage range	Force resolution	Measure resolution	Force accuracy ${ }^{1}$ $\pm(\%+m V)$	Measure accuracy ${ }^{1}$ $(\%+m V+m V)$	Maximum current
$\pm 0.2 \mathrm{~V}$	200 nV	200 nV	$\pm(0.06+0.14)$	$\pm(0.06+0.14+\mathrm{lox} 0.05)$	1 A
$\pm 2 \mathrm{~V}$	$2 \mu \mathrm{~V}$	$2 \mu \mathrm{~V}$	$\pm(0.06+0.6)$	$\pm(0.06+0.6+\mathrm{lox} 0.5)$	1 A
$\pm 20 \mathrm{~V}$	$20 \mu \mathrm{~V}$	$20 \mu \mathrm{~V}$	$\pm(0.06+3)$	$\pm(0.06+3+10 \times 5)$	1 A
$\pm 40 \mathrm{~V}^{2}$	$40 \mu \mathrm{~V}$	$40 \mu \mathrm{~V}$	$\pm(0.06+3)$	$\pm(0.06+3+10 \times 10)$	1 A
$\pm(\%$ of reading value + fixed offset in $m V+$ proportional offset in $m V)$. Note:lo is the output current in A.					

Current range, resolution, and accuracy					
Current range	Force resolution	Measure resolution	Force accuracy ${ }^{1}$ $(\%+A+A)$	Measure accuracy ${ }^{1}$ $(\%+A+A)$	Maximum voltage
$\pm 10 \mu \mathrm{~A}$	10 pA	10 pA	$\pm(0.06+2 \mathrm{E}-9+\mathrm{Vox} 1 \mathrm{E}-10)$	$\pm(0.06+2 \mathrm{E}-9+\mathrm{Vo} \times 1 \mathrm{E}-10)$	30 V
$\pm 100 \mu \mathrm{~A}$	100 pA	100 pA	$\pm(0.06+2 \mathrm{E}-8+\mathrm{Vo} \times 1 \mathrm{E}-9)$	$\pm(0.06+2 \mathrm{E}-8+\mathrm{Vox} 1 \mathrm{E}-9)$	30 V
$\pm 1 \mathrm{~mA}$	1 nA	1 nA	$\pm(0.06+2 \mathrm{E}-7+\mathrm{Vox} 1 \mathrm{E}-8)$	$\pm(0.06+2 \mathrm{E}-7+\mathrm{Vox} 1 \mathrm{E}-8)$	30 V
$\pm 10 \mathrm{~mA}$	10 nA	10 nA	$\pm(0.06+2 \mathrm{E}-6+\mathrm{Vox} 1 \mathrm{E}-7)$	$\pm(0.06+2 \mathrm{E}-6+\mathrm{Vox} 1 \mathrm{E}-7)$	30 V
$\pm 100 \mathrm{~mA}$	100 nA	100 nA	$\pm(0.06+2 \mathrm{E}-5+\mathrm{Vo} \times 1 \mathrm{E}-6)$	$\pm(0.06+2 \mathrm{E}-5+\mathrm{Vox} 1 \mathrm{E}-6)$	30 V
$\pm 1 \mathrm{~A}^{2}$	$1 \mu \mathrm{~A}$	$1 \mu \mathrm{~A}$	$\pm(0.4+2 \mathrm{E}-4+\mathrm{Vo} \times 1 \mathrm{E}-5)$	$\pm(0.4+2 \mathrm{E}-4+\mathrm{Vox} 1 \mathrm{E}-5)$	30 V

1. $\pm(\%$ of reading value + fixed offset in $A+$ proportional offset in $A)$, Vo is the output voltage in V.
2. Pulse mode only.

Power consumption

Voltage source mode:

Voltage range	Power
0.2 V	$40 \times \mathrm{Ic}(\mathrm{W})$
2 V	$40 \times \mathrm{Ic}(\mathrm{W})$
40 V	$40 \times \mathrm{Ic}(\mathrm{W})$

Where Ic is the current compliance setting.

Current source mode:

Voltage compliance	Power
$\mathrm{Vc} \leq 0.2$	$40 \times \mathrm{lo}(\mathrm{W})$
$0.2<\mathrm{Vc} \leq 2$	$40 \times \mathrm{lo}(\mathrm{W})$
$2<\mathrm{Vc} \leq 40$	$40 \times \mathrm{lo}(\mathrm{W})$

Where Vc is the voltage compliance setting and lo is output current.

MCSMU measurement and output range

SMU source measurement mode

For HPSMU and MPSMU:
VFIM, IFVM
For HCSMU, MCSMU and HVSMU: VFIM, VFVM, IFVM, IFIM
Output terminal/connection:
For HPSMU and MPSMU: Dual triaxial connector, Kelvin (remote sensing)
For HCSMU:
Triaxial connector (for sense) and coaxial connector (for force)
Kelvin (remote sensing)
For MCSMU:
Dual triaxial connector, Kelvin (remote sensing)
For HVSMU:
High voltage triaxial connector, non-Kelvin
Voltage/current compliance (limiting) The SMU can limit output voltage or current to prevent damaging the device under test.
Voltage:
0 V to $\pm 200 \mathrm{~V}$ (HPSMU)
0 V to $\pm 100 \mathrm{~V}$ (MPSMU)
0 V to $\pm 40 \mathrm{~V}$ (HCSMU)
0 V to $\pm 30 \mathrm{~V}$ (MCSMU)
0 V to $\pm 3000 \mathrm{~V}$ (HVSMU)
Current:
$\pm 1 \mathrm{pA}$ to $\pm 1 \mathrm{~A}$ (HPSMU)
$\pm 1 \mathrm{pA}$ to $\pm 100 \mathrm{~mA}$ (MPSMU)
$\pm 10 \mathrm{nA}$ to $\pm 20 \mathrm{~A}$ (HCSMU)
$\pm 10 \mathrm{nA}$ to $\pm 1 \mathrm{~A}$ (MCSMU)
$\pm 1 \mathrm{pA}$ to $\pm 8 \mathrm{~mA}$ (HVSMU)
Compliance accuracy:
Same as the current or voltage set accuracy.

Power compliance

For HPSMU:
Power: 0.001 to 20 W
Resolution: 0.001 W
For MPSMU:
Power: 0.001 to 2 W
Resolution: 0.001 W
For HCSMU:
Power: 0.001 to 40 W (DC)
0.001 to 400 W (Pulse)

Resolution: 0.001 W
For MCSMU:
Power: 0.001 to 3 W (DC)
0.001 to 30 W (Pulse)

Resolution: 0.001 W "
For HVSMU: No power compliance

SMU pulse measurement

Pulse width, period, and delay:
For HPSMU and MPSMU:
Pulse width: $500 \mu \mathrm{~s}$ to 2 s
Pulse width resolution: $2 \mu \mathrm{~s}$
Pulse period: 5 ms to 5 s
Period \geq delay + width +2 ms
(when delay + width $\leq 100 \mathrm{~ms}$)
Period \geq delay + width +10 ms (when delay + width > 100 ms) Pulse period resolution: $100 \mu \mathrm{~s}$ Pulse delay: 0 s

For HCSMU:
Pulse width:
$50 \mu \mathrm{~s}$ to 1 ms (20 A range)
50μ s to $2 \mathrm{~s}(10 \mu \mathrm{~A}$ to 1 A range)
Pulse width resolution: $2 \mu \mathrm{~s}$
Pulse period: 5 ms to 5 s
Pulse period resolution: $100 \mu \mathrm{~s}$
Pulse duty:
For 20 A range: $\leq 1 \%$
For $10 \mu \mathrm{~A}$ to 1 A range
Period \geq delay + width +2 ms
(when delay + width $\leq 100 \mathrm{~ms}$)
Period \geq delay + width +10 ms
(when delay + width > 100 ms)
Pulse delay: 0 to (Period-width)
For MCSMU:
Pulse width:
$10 \mu \mathrm{~s}$ to 100 ms (1 A range)
10μ s to $2 \mathrm{~s}(10 \mu \mathrm{~A}$ to 100 mA range)
Pulse width resolution: $2 \mu \mathrm{~s}$
Pulse period: 5 ms to 5 s
Pulse period resolution: $100 \mu \mathrm{~s}$
Pulse duty:
For 1 A range: $\leq 5 \%$
For $10 \mu \mathrm{~A}$ to 100 m A range
Period \geq delay + width +2 ms
(when delay + width $\leq 100 \mathrm{~ms}$)
Period \geq delay + width +10 ms
(when delay + width > 100 ms)
Pulse delay: 0 to (Period-width)

For HVSMU:
Pulse width: $500 \mu \mathrm{~s}$ to 2 s Pulse width resolution: $2 \mu \mathrm{~s}$
Pulse period: 5 ms to 5 s Period \geq delay + width +2 ms (when delay + width $\leq 100 \mathrm{~ms}$) Period \geq delay + width +10 ms (when delay + width $>100 \mathrm{~ms}$)
Pulse period resolution: $100 \mu \mathrm{~s}$
Pulse delay: 0 to (Period - width)
Pulse output limitation: When the pulse voltage is more than 1500 volts, the peak and base of pulse should be same polarities.
Pulse measurement delay: 2μ s to (Period - pulse measurement time $-2 \mathrm{~m}) \mathrm{s}$, $2 \mu \mathrm{~s}$ resolution

Supplemental Characteristics

Current compliance setting accuracy

(for opposite polarity):
For HPSMU and MPSMU:
For 1 pA to 10 nA ranges:
V / I setting accuracy $\pm 12 \%$ of range
For 100 nA to 1 A ranges:
V / I setting accuracy $\pm 2.5 \%$ of range
For HCSMU and MCSMU:
For $10 \mu \mathrm{~A}$ to 1 A ranges:
V / I setting accuracy $\pm 2.5 \%$ of range
For 20 A range (HCSMU):
V / I setting accuracy $\pm 0.6 \%$ of range
For HVSMU:
For 1 nA to 10 nA ranges:
V / I setting accuracy $\pm 12 \%$ of range
For 100 nA to 10 mA ranges:
V / I setting accuracy $\pm 2.5 \%$ of range

SMU pulse setting accuracy
(fixed measurement range):
For HPSMU and MPSMU:
Width: $\pm 0.5 \% \pm 50 \mu \mathrm{~s}$
Period: $\pm 0.5 \% \pm 100 \mu \mathrm{~s}$
For HCSMU and MCSMU:
Width: $\pm 0.1 \% \pm 2 \mu \mathrm{~s}$
Period: $\pm 0.1 \% \pm 100 \mu \mathrm{~s}$
For HVSMU:
Width: $\pm 0.1 \% \pm 2 \mu \mathrm{~s}$
Period: $\pm 0.5 \% \pm 100 \mu \mathrm{~s}$
Minimum pulse measurement time:
$16 \mu \mathrm{~s}$ (HPSMU and MPSMU)
$2 \mu \mathrm{~s}$ (HCSMU and MCSMU)
$6 \mu \mathrm{~s}$ (HVSMU)
Voltage source output resistance:
(Force line, non-Kelvin connection)

$$
0.2 \Omega \text { (HPSMU) }
$$

0.3Ω (MPSMU)
3Ω (HVSMU, at 10 mA range)
Voltage measurement input resistance:
$\geq 10^{13} \Omega$ (HPSMU, MPSMU)
$\geq 10^{9} \Omega(\mathrm{HCSMU}, \mathrm{MCSMU}, \leq 1 \mathrm{~A})$,
$80 \mathrm{k} \Omega$ (HCSMU, 20 A)
$\geq 10^{12} \Omega$ (HVSMU)

Current source output resistance:

$\geq 10^{13} \Omega$ (HPSMU, MPSMU)
$\geq 10^{9} \Omega$ (HCSMU, MCSMU, $\leq 1 \mathrm{~A}$), $80 \mathrm{k} \Omega$ (HCSMU, 20 A)
$\geq 10^{12} \Omega$ (HVSMU, at 10 nA range)

Maximum allowable cable resistance:

(Kelvin connection)
For HPSMU and MPSMU:
Sense: 10Ω
Force: $10 \Omega(\leq 100 \mathrm{~mA})$, $1.5 \Omega(>100 \mathrm{~mA})$
For HCSMU:
Sense: 10Ω
Force: 0.6Ω (with Low Force)
For MCSMU
Sense: 10Ω
Force : 1Ω (with Low Force)

Maximum allowable inductance:

For HCSMU and MCSMU:
Force $3 \mu \mathrm{H}$ (with Low Force (shield))
Maximum load capacitance:
For HPSMU and MPSMU:
1 pA to 10 nA ranges: 1000 pF 100 nA to 10 mA ranges: 10 nF 100 mA and 1 A ranges: $100 \mu \mathrm{~F}$
For HCSMU:
$10 \mu \mathrm{~A}$ to 10 mA ranges: 12 nF 100 mA to 20 A ranges: $100 \mu \mathrm{~F}$
For MCSMU:
$10 \mu \mathrm{~A}$ to 10 mA range : 12 nF 100 mA to 1 A range : $100 \mu \mathrm{~F}$
For HVSMU:
1 nA to $1 \mu \mathrm{~A}$ ranges: 1000 pF $10 \mu \mathrm{~A}$ to 10 mA ranges: 10 nF
Maximum guard capacitance: 900 pF (HPSMU and MPSMU) 1500 pF (HVSMU)
Maximum shield capacitance: 5000 pF (HPSMU, MPSMU and HVSMU)

Noise characteristics:

For HPSMU, MPSMU and HVSMU
Voltage source: 0.01% of V range (rms.)
Current source: 0.1% of I range (rms.)
For HCSMU
Voltage/Current source: 100 mV (0 to peak) max
For MCSMU
Voltage / Current source:
200 mV (0 to peak) max

Overshoot:

For HPSMU and MPSMU
Voltage source: 0.03% of V range
Current source: 1% of I range
For HCSMU and MCSMU (filter ON)
Voltage/Current source: 10% of range
For HVSMU
Voltage source: 1V (resistive load)
Current source: 1\% of I range

Range switching transient noise:

For HPSMU and MPSMU (filter ON):
Voltage ranging: 250 mV
Current ranging: 70 mV
For HCSMU and MCSMU:
$10 \mu \mathrm{~A}$ to 1 A ranges: Voltage ranging: 250 mV Current ranging: 70 mV
20 A ranges: Voltage ranging: $5 \mathrm{~V} \max$

For HVSMU:
Voltage ranging: 300 mV
Current ranging: 300 mV

Maximum guard offset voltage:

$\pm 1 \mathrm{mV}$ (HPSMU)
$\pm 3 \mathrm{mV}$ (MPSMU)
$\pm 5 \mathrm{mV}$ (HVSMU)

Maximum slew rate:

$0.2 \mathrm{~V} / \mu \mathrm{s}$ (HPSMU and MPSMU)
$1 \mathrm{~V} / \mu \mathrm{s}$ (HCSMU and MCSMU)
$0.4 \mathrm{~V} / \mu \mathrm{s}$ (HVSMU)

Output settling time

For HVSMU:
Output settling time: $500 \mu \mathrm{~s}$
To reach 0.01% of settling value.
Conditions:
100 V step, 8 mA compliance, 1000 pF load capacitance

MFCMU (multi frequency capacitance measurement unit) module specifications

Measurement functions

Measurement parameters:
Cp-G, Cp-D, Cp-O, Cp-Rp, Cs-Rs,
Cs-D, Cs-Q, Lp-G, Lp-D, Lp-Q, Lp-Rp, Ls-Rs, Ls-D, Ls-Q, R-X, G-B, Z- θ, Y- θ
Ranging:
Auto and fixed
Measurement terminal:
Four-terminal pair configuration, four BNC (female) connectors
Cable length:
1.5 m or 3 m , automatic
identification of accessories

Test signal

Frequency:

Range: 1 kHz to 5 MHz
Resolution: 1 mHz (minimum)
Accuracy: $\pm 0.008 \%$
Output signal level:
Range: $10 \mathrm{mV}_{\mathrm{ms}}$ to $250 \mathrm{mV}_{\mathrm{rms}}$
Resolution: $1 \mathrm{mV} \mathrm{V}_{\text {ms }}$
Accuracy:
$\pm\left(10.0 \%+1 \mathrm{mV}_{\mathrm{rms}}\right)$ at the measurement port of the MFCMU $\pm\left(15.0 \%+1 \mathrm{mV}_{\mathrm{rms}}\right)$ at the measurement port of MFCMU cable (1.5 m or 3.0 m)
Output impedance: 50Ω, typical
Signal level monitor:
Range: 10 mV rms to 250 mV ms
Accuracy:
$\pm\left(10.0 \%\right.$ of reading $\left.+1 \mathrm{mV} \mathrm{V}_{\mathrm{ms}}\right)$ at the measurement port of the MFCMU
$\pm(15.0 \%+1 \mathrm{mV} \mathrm{rms})$ at the measurement port of MFCMU cable (1.5 m or 3.0 m)

DC bias function
DC bias:
Range: 0 to $\pm 25 \mathrm{~V}$
Resolution: 1 mV
Accuracy: $\pm(0.5 \%+5.0 \mathrm{mV})$ at the measurement port or the MFCMU or the MFCMU cable ($1.5 \mathrm{~m} / 3 \mathrm{~m}$)

Maximum DC bias current
(Supplemental characteristics):

Impedance measurement range	Maximum DC bias current
50Ω	10 mA
100Ω	10 mA
300Ω	10 mA
$1 \mathrm{k} \Omega$	1 mA
$3 \mathrm{k} \Omega$	1 mA
$10 \mathrm{k} \Omega$	$100 \mu \mathrm{~A}$
$30 \mathrm{k} \Omega$	$100 \mu \mathrm{~A}$
$100 \mathrm{k} \Omega$	$10 \mu \mathrm{~A}$
$300 \mathrm{k} \Omega$	$10 \mu \mathrm{~A}$

Output impedance: 50Ω, typical
DC bias monitor:
Range: 0 to $\pm 25 \mathrm{~V}$
Accuracy (open load):
$\pm(0.2 \%$ of reading $+10.0 \mathrm{mV})$
at the measurement port or the
MFCMU cable ($1.5 \mathrm{~m} / 3 \mathrm{~m}$)

Sweep characteristics
Available sweep parameters:
Oscillator level, DC bias voltage, frequency
Sweep type: linear, log
Sweep mode: single, double
Sweep direction: up, down
Number of measurement points:
Maximum 1001 points

Measurement accuracy

The following parameters are used to express the impedance measurement accuracy at the measurement port of the MFCMU or the MFCMU cable (1.5 m or 3 m).
Z_{X} : Impedance measurement value (Ω)
D_{x} : Measurement value of D
$E=E_{p}{ }^{\prime}+\left(Z_{s}{ }^{\prime} /\left|Z_{x}\right|+Y_{0}{ }^{\prime}\left|Z_{x}\right|\right) \times 100(\%)$
$E_{p}{ }^{\prime}=E_{P L}+E_{\text {POSC }}+E_{p}(\%)$
$Y_{0}^{\prime}=Y_{0 L}+Y_{O S C}+Y_{0}(S)$
$Z_{\mathrm{s}}{ }^{\prime}=\mathrm{Z}_{\mathrm{SL}}+\mathrm{Z}_{\mathrm{osc}}+\mathrm{Z}_{\mathrm{s}}(\Omega)$
|Z| accuracy $\pm \mathrm{E}$ (\%)
θ accuracy $\pm \mathrm{E} / 100(\mathrm{rad})$

C accuracy

$$
\text { at } D_{x} \leq 0.1
$$

$\pm \mathrm{E}$ (\%)
at $D_{x}>0.1$
$\pm E x \sqrt{\left(1+D_{x}^{2}\right)}(\%)$
D accuracy
at $D_{x} \leq 0.1$
$\pm \mathrm{E} / 100$
at $D_{x}>0.1$
$\pm E x\left(1+D_{x}\right) / 100$
G accuracy
at $\mathrm{D}_{\mathrm{x}} \leq 0.1$
$\pm E / D_{x}(\%)$
at $D_{x}>0.1$
$\pm E x \sqrt{\left(1+D_{x}^{2}\right)} / D_{x}(\%)$
Note: measurement accuracy is specified under the following conditions:

Temperature: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
Integration time: 1 PLC

Parameters $\mathrm{E}_{\text {POSC }} \mathrm{Z}_{\text {oSc }}$		
Oscillator level	$\mathrm{E}_{\text {posc }}(\%)$	$\mathrm{Z}_{\text {osc }}(\mathrm{m} \Omega)$
$125 \mathrm{mV}<\mathrm{V}_{\text {osc }} \leq 250 \mathrm{mV}$	$0.03 \times\left(250 / \mathrm{V}_{\text {osc }}-1\right)$	$5 \times\left(250 / \mathrm{V}_{\text {osc }}-1\right)$
$64 \mathrm{mV}<\mathrm{V}_{\text {osc }} \leq 125 \mathrm{mV}$	$0.03 \times\left(125 / V_{\text {osc }}-1\right)$	$5 \times\left(125 / V_{\text {osc }}-1\right)$
$32 \mathrm{mV}<\mathrm{V}_{\text {osc }} \leq 64 \mathrm{mV}$	$0.03 \times\left(64 / \mathrm{V}_{\text {osc }}-1\right)$	$5 \times\left(64 / V_{\text {osc }}-1\right)$
$\mathrm{V}_{\text {OSC }} \leq 32 \mathrm{mV}$	$0.03 \times\left(32 / \mathrm{V}_{\text {oSC }}-1\right)$	$5 \times\left(64 / V_{\text {osc }}-1\right)$
$V_{\text {osc }}$ is oscillator level in mV .		

Parameters $E_{P L} Y_{0 L} Z_{S L}$			
Cable length	$\mathbf{E}_{\mathrm{PL}}(\%)$	$\mathbf{Y}_{0 L}(\mathbf{n S})$	$\mathbf{Z}_{\mathrm{SL}}(\mathbf{m} \Omega)$
1.5 m	$0.02+3 \times f / 100$	$750 \times f / 100$	5.0
3 m	$0.02+5 \times f / 100$	$1500 \times f / 100$	5.0

f is frequency in MHz. If measurement cable is extended, open compensation, short compensation, and load compensation must be performed.

Parameters $Y_{\text {OSC }} Y_{0} E_{p} Z_{S}$				
Frequency	$\mathbf{Y}_{\text {osc }}(\mathbf{n S})$	$\mathbf{Y}_{0}(\mathbf{n S})$	$\mathbf{E}_{p}(\%)$	$\mathbf{Z}_{\mathrm{s}}(\mathbf{m} \Omega)$
$1 \mathrm{kHz} \leq \mathrm{f} \leq 200 \mathrm{kHz}$	$1 \times\left(125 / \mathrm{V}_{\text {osc }}-0.5\right)$	1.5	0.095	5.0
$200 \mathrm{kHz}<\mathrm{f} \leq 1 \mathrm{MHz}$	$2 \times\left(125 / \mathrm{V}_{\text {osc }}-0.5\right)$	3.0	0.095	5.0
$1 \mathrm{MHz}<\mathrm{f} \leq 2 \mathrm{MHz}$	$2 \times\left(125 / \mathrm{V}_{\text {osc }}-0.5\right)$	3.0	0.28	5.0
$2 \mathrm{MHz}<\mathrm{f}$	$20 \times\left(125 / \mathrm{V}_{\text {osc }}-0.5\right)$	30.0	0.28	5.0

f is frequency in Hz .
$V_{\text {osc }}$ is oscillator level in mV .
Example of calculated C/G measurement accuracy

Frequency	Measured capacitance	C accuracy ${ }^{1}$	Measured conductance	G accuracy ${ }^{1}$
5 MHz	1 pF	$\pm 0.61 \%$	$\leq 3 \mu \mathrm{~S}$	$\pm 192 \mathrm{nS}$
	10 pF	$\pm 0.32 \%$	$\leq 31 \mu \mathrm{~S}$	$\pm 990 \mathrm{nS}$
	100 pF	$\pm 0.29 \%$	$\leq 314 \mu \mathrm{~S}$	$\pm 9 \mu \mathrm{~S}$
	1 nF	$\pm 0.32 \%$	$\leq 3 \mathrm{mS}$	$\pm 99 \mu \mathrm{~S}$
1 MHz	1 pF	$\pm 0.26 \%$	$\leq 628 \mathrm{nS}$	$\pm 16 \mathrm{nS}$
	10 pF	$\pm 0.11 \%$	$\leq 6 \mu \mathrm{~S}$	$\pm 71 \mathrm{nS}$
	100 pF	$\pm 0.10 \%$	$\leq 63 \mu \mathrm{~S}$	$\pm 624 \mathrm{nS}$
	1 nF	$\pm 0.10 \%$	$\leq 628 \mu \mathrm{~S}$	$\pm 7 \mu \mathrm{~S}$
100 kHz	10 pF	$\pm 0.18 \%$	$\leq 628 \mathrm{nS}$	$\pm 11 \mathrm{nS}$
	100 pF	$\pm 0.11 \%$	$\leq 6 \mu \mathrm{~S}$	$\pm 66 \mathrm{nS}$
	1 nF	$\pm 0.10 \%$	$\leq 63 \mu \mathrm{~S}$	$\pm 619 \mathrm{nS}$
	10 nF	$\pm 0.10 \%$	$\leq 628 \mu \mathrm{~S}$	$\pm 7 \mu \mathrm{~S}$
10 kHz	100 pF	$\pm 0.18 \%$	$\leq 628 \mathrm{nS}$	$\pm 11 \mathrm{nS}$
	1 nF	$\pm 0.11 \%$	$\leq 6 \mu \mathrm{~S}$	$\pm 66 \mathrm{nS}$
	10 nF	$\pm 0.10 \%$	$\leq 63 \mu \mathrm{~S}$	$\pm 619 \mathrm{nS}$
	100 nF	$\pm 0.10 \%$	$\leq 628 \mu \mathrm{~S}$	$\pm 7 \mu \mathrm{~S}$
1 kHz	100 pF	$\pm 0.92 \%$	$\leq 63 \mathrm{nS}$	$\pm 6 \mathrm{nS}$
	1 nF	$\pm 0.18 \%$	$\leq 628 \mathrm{nS}$	$\pm 11 \mathrm{nS}$
	10 nF	$\pm 0.11 \%$	$\leq 6 \mu \mathrm{~S}$	$\pm 66 \mathrm{nS}$
	100 nF	$\pm 0.10 \%$	$\leq 63 \mu \mathrm{~S}$	$\pm 619 \mathrm{nS}$

1. The capacitance and conductance measurement accuracy is specified under the following conditions:
$D_{X} \leq 0.1$
Integration time: 1 PLC
Test signal level: 30 mV rms
At four-terminal pair port of MFCMU

UHC (Ultra High Current) Expander / Fixture (N1265A) Specifications

Specifications

Functions:

Fixture capability
Current expander capability
Expands the B1505A's current capability up to 1500 A. Current expansion is made using the Ultra High Current Unit (UHCU), which is comprised of an external module and either two MCSMUs, two HCSMUs or one MCSMU and one HCSMU.

Selector capability
This allows the user to switch the output between the UHCU and other modules connected to the selector input ports. The modules supported on the high-voltage input port are the HVSMU and HVMCU; the modules supported on the SMU input port are the HPSMU and MPSMU.

Channels:

Channel	Number	Input	Output
SMU	6 (When using non-Kelvin connections) 3 (When using Kelvin connections)	Triaxial 1	Banana
UHV	1	UHV coaxial (High), SHV (Low)	UHV coaxial (High), SHV (Low)
Bias Tee	1	SHV x 2(High, Low)	SHV x 2 (High, Low)
Gate control	1	Triaxial x 2 (Force, Sense)	Banana x 2 (High, Low)
Selector	1^{2}	HV Triaxial $\times 1$ Triaxial $\times 2$ (Force, Sense)	Banana $\times 6$ (High Force/Sense, Low Force Sense, Guard, Chassis)

1. Either the HCSMU or the Dual HCSMU can be connected to the SMU 3 port.
2. The UHCU or any module connected to one of the other two selector input terminals can be connected to the output terminal.

Maximum output for selector channel:

HVSMU Output : $\pm 3000 \mathrm{~V} / 4 \mathrm{~mA}, \pm 1500 \mathrm{~V} / 8 \mathrm{~mA}$
HVMCU Output : $\pm 2200 \mathrm{~V} / 1.1 \mathrm{~A}, \pm 1500 \mathrm{~V} / 2.5 \mathrm{~A}$
HPSMU Output: $\pm 200 \mathrm{~V} / 1 \mathrm{~A}$
MPSMU Output: $\pm 100 \mathrm{~V} / 100 \mathrm{~mA}$
UHCU Output: $\pm 60 \mathrm{~V} / 1500 \mathrm{~A}$ or 500 A
Refer to each module specification.

Gate control channel:

Non-Kelvin connection
Maximum Voltage : $\pm 40 \mathrm{~V}$
Maximum Current : ± 1 A Pulse, 100 m A DC.
Output Resistance: $0 \Omega / 10 \Omega / 100 \Omega / 1000 \Omega$ (nominal value)

UHCU:

Output peak power Current range	Peak power
$\pm 500 \mathrm{~A}$	7.5 kW
$\pm 1500 \mathrm{~A}$	22.5 kW

Voltage range, resolution, and accuracy				
Voltage range	Setting resolution	Measure resolution	Setting accuracy $\boldsymbol{y}^{1.2,3}$ $\pm(\%+\mathrm{mV})$	Measure accuracy $\boldsymbol{y}^{1,3}$ $\pm(\%+\mathrm{mV})$
$\pm 60 \mathrm{~V}$	$200 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$	$\pm(0.2+10)$	$\pm(0.2+10)$

1. $\pm(\%$ of reading value + fixed offset in $m V)$
2. Setting accuracy is defined at open load.
3. Accuracy is defined 1 ms pulse width at 500 A range and 500μ s pulse width at 1500 A range.

Current range, resolution, and accuracy ${ }^{1}$				
Current range	Setting resolution	Measure resolution	Setting accuracy ${ }^{2,3}$ $\pm(\%+A+A)$	Measure accuracy $\pm(\%+A+A)$
$\pm 500 \mathrm{~A}$	1 mA	$500 \mu \mathrm{~A}$	$\pm\left(0.6+0.3+0.01^{*} \mathrm{Vo}\right)$	$\pm\left(0.6+0.3+0.01^{*} \mathrm{Vo}\right)$
$\pm 1500 \mathrm{~A}$	4 mA	2 mA	$\pm\left(0.8+0.9+0.02^{*} \mathrm{Vo}\right)$	$\pm\left(0.8+0.9+0.02^{*} \mathrm{Vo}\right)$

1. Maximum voltage compliance in current pulse mode is 63 V . Over 400 A at 500 A range and over 1200 A at 1500 A range are supplemental characteristics.
2. Accuracy is defined with 1 ms pulse width at 500 A range and with $500 \mu \mathrm{~s}$ pulse width at 1500 A range.
3. $\pm(\%$ of reading value + fixed offset in $A+$ proportional offset in $A)$, Vo is the Output Voltage.

UHCU Pulse width and resolution

Current range	Voltage pulse width	Current pulse width	Resolution	Pulse period ${ }^{1}$
500 A	$10 \mu \mathrm{sec}-1 \mathrm{msec}$	$10 \mu \mathrm{sec}-1 \mathrm{msec}$	$2 \mu \mathrm{sec}$	Duty $\leq 0.4 \%$
1500 A	$10 \mu \mathrm{sec}-500 \mu \mathrm{sec}$	$10 \mu \mathrm{sec}-500 \mu \mathrm{sec}$	$2 \mu \mathrm{sec}$	Duty $\leq 0.1 \%$

1. At continuous maximum current output, the output current may be reduced due to insufficient charging time.

Other functionality

Fiilter
Filter can be used for UHC output in current mode at 500 A range.
Thermocouple input: 2ea 2 K-type thermocouple inputs Temperature range: -50 degree C to 300 degree C.

Other Terminals/Indicators
Digital I/O input: 1ea.
Digital I/O output: 1 ea.
Power indicator: 1ea.
High voltage indicator: 1ea.
Selector indicator: 1ea.
Interlock terminal: 1ea.
Earth terminal: 1ea.
Wrist strap terminal: 1ea.

Supplemental characteristics

UHCU Output resistance	
Output range	Nominal value
500 A	$120 \mathrm{~m} \Omega$
1500 A	$40 \mathrm{~m} \Omega$

UHC measurement and output range

The UHCU output is only available in pulsed mode.
In the equations in the above diagram, 'I' stands for current, 'V' for Voltage and 'Rdut' stands for the impedance of the device under test.

Leakage
Selector channel
HVSMU is applied at High Sense terminal: less than 1n A
HPSMU/MPSMU is applied at High Force terminal: less than 10 nA
UHVU channel
Less than 1nA
SMU channel
Less than 1 nA

Thermocouple reading accuracy Temperature range Accuracy $0^{\circ} \mathrm{C}<=\mathrm{T}<100^{\circ} \mathrm{C}$ $+/-2^{\circ} \mathrm{C}$ $\mathrm{T}>=100^{\circ} \mathrm{C}$ $+/-5^{\circ} \mathrm{C}$ $\mathrm{T}<0^{\circ} \mathrm{C}$ $+/-5^{\circ} \mathrm{C}$

HVSMU Current Expander (N1266A) Specifications

Specifications

Functions:

Current expander capability
Expands HVSMU current up to 2.5 A . Current expansion is made using the High Voltage Medium Current Unit (HVMCU), which is comprised of a module in the N1266A and two MCSMUs.

Selector capability
This allows the connections between the output terminal to be switched between the HVMCU and the HVSMU. The HVSMU output can be routed either directly or through a $100 \mathrm{k} \Omega$ resistor.
Output Terminals:
High (HV Triaxial)
Low (BNC)
Maximum output:
HVSMU : $\pm 3000 \mathrm{~V} / 4 \mathrm{~mA}, \pm 1500 \mathrm{~V} / 8 \mathrm{~m}$
HVMCU : Refer to HVMCU specificatio
HVMCU

Output Peak Power	
Voltage range	Peak power
$\pm 2200 \mathrm{~V}$	600 W
$\pm 1500 \mathrm{~V}$	900 W

Voltage range, resolution, and accuracy

Voltage range	Setting resolution	Measure resolution	Setting accuracy ${ }^{1,2,3}$ $\pm(\%+\mathrm{V})$	Measure accuracy $\boldsymbol{M}^{1,2}$ $\pm(\%+\mathrm{V})$
$\pm 2200 \mathrm{~V}$	3 mV	3 mV	$\pm(5+20)$	$\pm(0.8+1.8)$
$\pm 1500 \mathrm{~V}$	1.5 mV	3 mV	$\pm(5+20)$	$\pm(0.8+1.8)$

1. $\pm(\%$ of reading value + fixed offset in V)
2. Accuracy is defined with $100 \mu \mathrm{~s}$ pulse at 1.1 A range and 2.5 A range, 1 ms pulse at 100 mA range.
3. Setting accuracy is defined at open load.

Current range, resolution, and accuracy ${ }^{1}$		
Current range	Measure resolution	Measure accuracy ${ }^{1}$ $\pm(\%+A+A)$
$\pm 2.5 \mathrm{~A}$	$4 \mu \mathrm{~A}$	$\pm(0.9+4 \mathrm{E}-3+\mathrm{Vo} \times 3 \mathrm{E}-7)$
$\pm 1.1 \mathrm{~A}$	$4 \mu \mathrm{~A}$	$\pm(0.9+4 \mathrm{E}-3+\mathrm{Vo} \times 3 \mathrm{E}-7)$
$\pm 110 \mathrm{~mA}$	200 nA	$\pm(0.9+2 \mathrm{E}-4+\mathrm{Vo} \times 3 \mathrm{E}-7)$

[^0]| HVMCU Pulse width and resolution | | |
| :--- | :--- | :--- |
| Output range | Pulse width | Resolution |
| $1500 \mathrm{~V} / 2.5 \mathrm{~A}$ | $10 \mu \mathrm{sec}-100 \mu \mathrm{sec}$ | $2 \mu \mathrm{sec}$ |
| $2200 \mathrm{~V} / 1.1 \mathrm{~A}$ | $10 \mu \mathrm{sec}-100 \mu \mathrm{sec}$ | $2 \mu \mathrm{sec}$ |
| $2200 \mathrm{~V} / 110 \mathrm{~mA}$ | $10 \mu \mathrm{sec}-1 \mathrm{msec}$ | $2 \mu \mathrm{sec}$ |

Other Terminals / Indicators
Digital I/O Input: 1ea.
Digital I/O output: 1ea.
Power indicator: 1ea
Selector indicator: 1ea

Supplemental characteristics
HVMCU Charged Capacitance: $0.22 \mu \mathrm{~F}$

Output resistance

Output range Nominal value
$1500 \mathrm{~V} / 2.5 \mathrm{~A} \quad 600 \Omega$
$2200 \mathrm{~V} / 1.1 \mathrm{~A} \quad 2000 \Omega$
2200 V/110 mA 20000Ω

Leakage

Selector output
HVSMU: less than 80 pA

HVMCU Measurement and output range

The HVMCU's output is only available in pulsed mode.
In the equations in the above diagram, 'I' stands for current, 'V' for Voltage and 'Rdut' stands for the impedance of the device under test.

UHV (Ultra High Voltage) Expander (N1268A) Specifications

Specifications

Voltage range, resolution, and accuracy ${ }^{1}$				
Voltage range	Force resolution	Measure resolution	Setting accuracy ${ }^{2,3}$ $\pm(\%+\mathrm{V})$	Measure accuracy ${ }^{2}$ $\pm(\%+$ V)
$\pm 10 \mathrm{kV}$	10 mV	10 mV	$\pm(1.2+42)$	$\pm(1.2+42)$

1. N1268A is controlled and makes measurement with two MCSMUs or a combination of a HCSMU and a MCSMU.
2. $\pm(\%$ of reading value + fixed offset in V)
3. Setting accuracy is defined at open load.

Current range, resolution, and accuracy ${ }^{1}$		
Current range	Measure resolution	Measure accuracy ${ }^{2}$ $(\%+A+A)$
$\pm 10 \mu \mathrm{~A}$	10 pA	$\pm(0.06+2 \mathrm{E}-9+1 \mathrm{E}-9)$
$\pm 100 \mu \mathrm{~A}$	100 pA	$\pm(0.06+2 \mathrm{E}-8+1 \mathrm{E}-9)$
$\pm 1 \mathrm{~mA}$	1 nA	$\pm(0.06+2 \mathrm{E}-7+1 \mathrm{E}-9)$
$\pm 10 \mathrm{~mA}$	10 nA	$\pm(0.06+2 \mathrm{E}-6+1 \mathrm{E}-9)$
$\pm 100 \mathrm{~mA}^{3}$	100 nA	$\pm(0.06+20 \mathrm{E}-6+1 \mathrm{E}-9)$

1. N1268A is controlled and makes measurement with two MCSMUs or a combination of a HCSMU and a MCSMU.
2. \pm (\% of reading value + fixed offset in A + fixed offset in A)
3. Pulsed mode only (Maximum pulse width is 1 ms). The maximum current is 20 mA .

UHV Pulse width and resolution		
Output range	Pulse width	Resolution
100 mA	$100 \mu \mathrm{~s}$ to 1 ms	$2 \mu \mathrm{~s}$
$\leq 10 \mathrm{~mA}$	$100 \mu \mathrm{~s}$ to 2 s	$2 \mu \mathrm{~s}$

Output Terminals
High : UHV coaxial
Low : SHV
Other Terminals / Indicators
Digital I/O Input: 1ea.
Power indicator: 1ea
High Voltage indicator: 1ea
Interlock terminal Input: 1ea
Interlock terminal Output: 1ea Earth terminal: 1ea
Supplemental characteristics

UHVU Output resistance	
Output range	Nominal value
High	10000Ω
Low	1000Ω

Other AC characteristics	
Slew rate	$100 \mathrm{~V} / \mu$ s (with 1 m cable)
Overshoot	$\pm 1 \%$ of setting voltage
Ripple	$3 \mathrm{Vp}-\mathrm{p}$
Maximum load capacitance	5 nF
Maximum load inductance	$5 \mu \mathrm{H}$

Accessories

N1258A module selector

```
Specifications
Input terminals:
    HPSMU force port', 1 ea., (Triaxial)
    HPSMU sense port', 1 ea., (Triaxial)
    HCSMU force port, 1 ea. (BNC)
    HCSMU sense port, 1 ea. (Triaxial)
    HVSMU port², 1 ea. (HV triaxial)
    GNDU port, 1 ea. (Triaxial)
    Digital I/O port, 1 ea. (D-sub 25 pin)
    AC power line connector, 1 ea.
    1. Either HPSMU or MPSMU can be
        connected to HPSMU port.
    2. Either HVSMU or HVMCU can be
        connected to HVSMU port.
Output terminal:
    High force (HV triaxial)
    High sense (HV triaxial)
    Low force (BNC)
    Low sense (BNC)
    External relay control output
        (D-sub 25 pin)
Protection:
    HPSMU, GNDU, HCSMU Low Force
Power indicator:
    LED turns yellow when AC power is
    applied and turns green the module
    selector is ready to use.
Status indicator:
    Green LED lights to indicate the
    present connection path of module
    selector; Open, HCSMU, HPSMU, or
    HVSMU
Maximum voltage/current:
    For HPSMU port:
        \(\pm 200 \mathrm{~V} / 1 \mathrm{~A}\)
    For HCSMU port:
        \(\pm 40 \mathrm{~V} / 2 \mathrm{~A}, \pm 20 \mathrm{~V} / 30 \mathrm{~A}\)
        (Pulse width 1 ms, duty 1\%)
    For HVSMU port:
        \(\pm 3000 \mathrm{~V} / 4 \mathrm{~mA}\),
        \(\pm 1500 \mathrm{~V} / 2.5 \mathrm{~A}, \pm 2200 \mathrm{~V} / 1.1 \mathrm{~A}\)
```


Specifications

Input terminals
HPSMU force port', 1 ea., (Triaxial)
HPSMU sense port', 1 ea.., (Triaxial)
HCSMU force port, 1 ea. (BNC)
HCSMU sense port, 1 ea. (Triaxial)
HVSMU port², 1 ea. (HV triaxial)
GNDU port, 1 ea. (Triaxial)
Digital I/O port, 1 ea. (D-sub 25 pin)
AC power line connector, 1 ea.
.Either HPSMU or MPSMU can be 2. Either HVSMU or HVMCU can be connected to HVSMU port.
Output terminal:
High force (HV triaxial)
High sense (HV triaxial)
Low force (BNC)
Low sense (BNC)
External relay control output (D-sub 25 pin)
Protection:
HPSMU, GNDU, HCSMU Low Force
Power indicator:
LED turns yellow when AC power is applied and turns green the module selector is ready to use.
Status indicator:
Green LED lights to indicate the present connection path of module selector; Open, HCSMU, HPSMU, or HVSMU.
Maximum voltage/current:
For HPSMU port: $\pm 200 \mathrm{~V} / 1 \mathrm{~A}$
For HCSMU port: $\pm 40 \mathrm{~V} / 2 \mathrm{~A}, \pm 20 \mathrm{~V} / 30 \mathrm{~A}$ (Pulse width 1 ms, duty 1\%)
For HVSMU port: $\pm 3000 \mathrm{~V} / 4 \mathrm{~mA}$ $\pm 1500 \mathrm{~V} / 2.5 \mathrm{~A}, \pm 2200 \mathrm{~V} / 1.1 \mathrm{~A}$

Supplemental characteristics
Leakage current:
For HPSMU:
10 pA at 200 V
For HCSMU:
100 pA at 10 V (High Force to Low Force, High Sense to Low Sense)
For HVSMU:
10 pA at 1500 V (humidity range:
20% to $70 \% \mathrm{RH}$)
20 pA at 3000 V (humidity range:
20% to 50% RH)
N1259A test fixture

Specifications

Input terminals:
HPSMU port ${ }^{1}$, 2 ea.
Force, sense (Triaxial)
HCSMU port, 2 ea.
Force (BNC), sense (Triaxial)
HVSMU port², 1 ea. (HV triaxial)
GNDU port, 1 ea. (Triaxial)
AUX port, 2 ea. (BNC)
Interlock port, 1 ea.

1. Either HPSMU or MPSMU can be connected to HPSMU port.
2. Either HVSMU or HVMCU can be connected to HVSMU port.
Protection:
HPSMU, GNDU, HCSMU Low Force terminal
High voltage indicator:
LED turns red when a SMU output voltage is over 42 V .

Maximum voltage/current:
For HPSMU port:
Force: $\pm 200 \mathrm{~V} / 1 \mathrm{~A}$
Sense: $\pm 200 \mathrm{~V}$
For HCSMU port:
High Force: $\pm 40 \mathrm{~V} / 2 \mathrm{~A}, \pm 20$ V/40 A (Pulse width 1 ms, duty 1\%)
Low Force: $\pm 40 \mathrm{~V} / 2 \mathrm{~A}, \pm 20 \mathrm{~V} / 40$
A (Pulse width 1 ms , duty 1\%)
High Sense: $\pm 40 \mathrm{~V}$
Low Sense: ± 40 V
For HVSMU port:
Force: $\pm 3000 \mathrm{~V} / 4 \mathrm{~mA}$, $\pm 1500 \mathrm{~V} / 2.5 \mathrm{~A}, \pm 2200 \mathrm{~V} / 1.1 \mathrm{~A}$

Note: The total power consumption of all modules cannot exceed 50 W when using test fixture under the condition that operating temperature is more than $35^{\circ} \mathrm{C}$.

Supplemental characteristics

Leakage current:
For HPSMU (Force, Sense) port: 10 pA at 200 V (Force, Sense)
For HCSMU (High Force, High sense)
port: 100 pA at 10 V
For HVSMU (Force) port: 10 pA at 1500 V (humidity range: 20\% to 70\% RH)
20 pA at 3000 V (humidity range: 20% to 50% RH)

N1259A-010 inline package socket module (3 pin)

Specifications

Number of terminal:
Sockets, 6 ea. (04 mm jack (banana))
DUT interface:
Inline package socket (3-pin)
Maximum voltage for terminals:
3000 Vdc

N1259A-011 universal socket module

Specifications

Number of terminal:
Sockets, 8 ea. (04 mm jack (banana))
Maximum voltage for terminals:
3000 Vdc

N1259A-013 Curve Tracer test adapter socket module

Specifications

Number of terminals:
Sockets, 6 ea.
(04 mm jack (banana))
Test adapter interface:*
Sockets, 6 ea.
(Ø4 mm jack (banana))
Maximum voltage at terminals:
3000 V Vdc
*A test adapter for Tektronix curve tracers (370B/371B) can be connected to this interface.

N1259A-020 high voltage bias-tee

Specifications

Input terminals:
DC bias input, 1 ea.
(04 mm jack (banana))
MFCMU port, 1 ea.
Hcur, Hpot, Lcur, Lpot, (BNC)
Guard input, 1ea ($\varnothing 4 \mathrm{~mm}$ banana jack)
Output terminal:
MFCMU port
High (SHV)
Low (SHV)
External DC bias voltage: $\pm 3000 \mathrm{~V}$
Frequency:
10 kHz to 1 MHz (150Ω at 10 kHz)
Series capacitance: $110 \mathrm{nF} \pm 5 \%$
Input resistance: $100 \mathrm{k} \Omega \pm 1 \%$
N1259A-021 1 M Ω
resistor box

Specifications

Input/output terminals:
04 mm jack (banana), 1 ea.
Resistance: $1 \mathrm{M} \Omega \pm 5 \%$
Maximum voltage: $\pm 3000 \mathrm{~V}$
Power rating: 9 W

Supplemental characteristics

Leakage current: 10 pA at 100 V
N1259A-022 $100 \mathrm{k} \Omega$
resistor box

Specifications

Input/output terminals:
04 mm jack (banana), 1 ea.
Resistance: $100 \mathrm{k} \Omega \pm 5 \%$
Maximum voltage: $\pm 3000 \mathrm{~V}$
Power rating: 6.4 W

Supplemental characteristics

Leakage current: 10 pA at 100 V
N1259A-030 1 k Ω resistor box for gate

Specifications

Input/output terminals:
04 mm jack (banana), 1 ea.
Resistance: $1 \mathrm{k} \Omega \pm 10 \%$
Maximum voltage: $\pm 200 \mathrm{~V}$
Maximum power: 1 W

Supplemental characteristics
 Leakage current: 10 pA at 100 V

N1259A-035 Universal resistor box

Specifications

Input/output terminals:
$\emptyset 4 \mathrm{~mm}$ banana jack, 1 ea.
Resistance: Installed by a user
Maximum voltage for terminals: $\pm 3000 \mathrm{~V}$

N1259A-300 module selector for test fixture

Specifications

Input terminals:
HPSMU port', 1 ea.
Force, sense (Triaxial)
HCSMU port, 1 ea. Force (BNC), sense (Triaxial)
HVSMU port ${ }^{2}, 1$ ea. (HV triaxial)
GNDU port, 1 ea. (Triaxial)
Digital I/O port, 1 ea. (D-sub 25 pin)
AC power line connector, 1 ea.

1. Either HPSMU or MPSMU can be connected to HPSMU port.
2. Either HVSMU or HVMCU can be connected to HVSMU port.
Output terminal:
High force and guard
High sense and guard
Low force
Low sense (04 mm jack (banana))
Protection: HPSMU, GNDU, HCSMU Low Force
Power indicator:
LED turns yellow when AC power is applied and turns green the module selector is ready to use.
Status indicator:
Green LED lights to indicate the present connection path of module selector; Open, HCSMU, HPSMU, or HVSMU.
Maximum voltage/current:
For HPSMU port:
$\pm 200 \mathrm{~V} / 1 \mathrm{~A}$
For HCSMU port:
$\pm 40 \mathrm{~V} / 2 \mathrm{~A}, \pm 20 \mathrm{~V} / 30 \mathrm{~A}$
(Pulse width 1 ms , duty 1%)
For HVSMU:
$\pm 3000 \mathrm{~V} / 4 \mathrm{~mA}$,
$\pm 1500 \mathrm{~V} / 2.5 \mathrm{~A}, \pm 2200 \mathrm{~V} / 1.1 \mathrm{~A}$

N1262A-002 100 k Ω resistor box

Specifications

Input terminals:
HVSMU port, 1 ea. (HV triaxial)
Output terminals:
SHV connector, 1 ea.
Resistance: $100 \mathrm{k} \Omega \pm 5 \%$
Maximum voltage: $\pm 3000 \mathrm{~V}$
Maximum power: 6.4 W

Supplemental characteristics

Leakage current: 10 pA at 100 V
N1262A-010 1 k Ω resistor box
for gate (triaxial output)

Specifications

Input terminals:
Triaxial connector, 1 ea.
Output terminals:
Triaxial connector, 1 ea.
Resistance: $1 \mathrm{k} \Omega \pm 10 \%$
Maximum voltage: $\pm 200 \mathrm{~V}$
Maximum power: 1 W

Supplemental characteristics

Leakage current: 10 pA at 100 V
N1262A-011 1 k Ω resistor box
for gate (SHV output)

Specifications

Input terminals:
HV triaxial connector, 1 ea.
Output terminals:
SHV connector, 1 ea.
Resistance: $1 \mathrm{k} \Omega \pm 10 \%$
Maximum voltage: $\pm 3000 \mathrm{~V}$
Maximum power: 1 W

Supplemental characteristics

Leakage current: 10 pA at 100 V

N1262A-020 Universal resistor box, Triaxial

Specifications

Input terminals:
Triaxial connector, 1 ea.
Output terminals:
Triaxial connector, 1 ea.
Resistance: Installed by user
Maximum voltage for terminals: $\pm 200 \mathrm{~V}$
N1262A-021 Universal resistor box, HV Triaxial to SHV

Specifications

Input terminals:
HVSMU port, 1 ea. (HV triaxial)
Output terminals:
SHV connector, 1 ea.
Resistance: Installed by user
Maximum voltage for terminals: ± 3000 V

N1262A-023 Universal resistor box for Ultra High Voltage

Specifications

Input terminals:
UHV coaxial connector, 1 ea.
Output terminals:
UHV coaxial connector, 1 ea.
Resistance: Installed by user
Maximum voltage for terminals: $\pm 10 \mathrm{kV}$

N1262A-036 50 Ohm

Termination Adapter

Specifications

Input terminal (BNC)
Output terminal (BNC)
Maximum power: 1 W

Accessories for N1265A

N1254A-524 500 A Ultra High
 Current Prober System Cable

Specifications

Input terminals: 8 ea. (04 mm jack (banana))
Selector Output
High Force
High Sense
Low Force
Low Sense
Guard
Gate output
High Force
Low Force
Chassis
Output terminals
High Force ($\varnothing 4 \mathrm{~mm}$ jack (banana)) Low Force ($\emptyset 4 \mathrm{~mm}$ jack (banana))
High Sense (HV triaxial) Low Sense (BNC) Gate (BNC)
Maximum voltage / current
For High Force $\pm 3000 \mathrm{~V} / 39 \mathrm{~A}$ (DC), 500 A (Pulse)
For Low Force $\pm 200 \mathrm{~V} / 39 \mathrm{~A}$ (DC), 500 A (Pulse)
For High Sense $\pm 3000 \mathrm{~V} / 1 \mathrm{~A}$
For Low Sense, Gate $\pm 200 \mathrm{~V} / 1 \mathrm{~A}$

N1265A-010 500 A Ultra High
Current 3-pin Inline Package
Socket Module

Specifications

Number of terminal:
Sockets, 6 ea. ($\emptyset 4 \mathrm{~mm}$ jack (banana))
DUT interface:
Inline package socket (3-pin)
Maximum voltage for terminals:
3000 Vdc
Maximum current for terminals:
For Collector/Drain Force and
Emitter/Source Force
39 A (DC), 500 A (Pulse)
For others 1A (DC), 20 A (Pulse)

N1265A-011 Universal Socket Module

Specifications

Number of terminal:
Sockets, 6 ea. (04 mm jack
(banana))
Maximum voltage for terminals: 3000 Vdc
Universal blank area :
$90 \mathrm{~mm}(\mathrm{~W}) \times 81 \mathrm{~mm}(\mathrm{D})$
N1265A-013 Curve Tracer Test
Adapter Socket Module

Specifications

Number of terminals: Sockets, 6 ea.
($\emptyset 4 \mathrm{~mm}$ jack (banana))
Test adapter interface:*
Sockets, 6 ea. ($\emptyset 4 \mathrm{~mm}$ jack (banana))
Maximum voltage at terminals: 3000V Vdc
Maximum current for terminals: For Collector/Drain Force and Emitter/Source Force 39 A (DC), 500 A (Pulse)
For others
1A (DC), 20 A (Pulse)
*A test adapter for Tektronix curve tracers (370B/371B) can be connected to this interface.

N1265A-035 Universal R-Box for N1265A

Specifications

Input: 4 ea. (04 mm plug (banana)) High (Force, Sense) Low (Force, Sense)
Output terminals: 2 ea. ($\emptyset 4 \mathrm{~mm}$ jack (banana))

High, Low
Resistance: Installed by a user
Maximum voltage for terminals: $\pm 200 \mathrm{~V}$

N1265A-040 10 kV Ultra High Voltage Gate Protection Adapter

Specifications

Input: 4 ea. ($\emptyset 4 \mathrm{~mm}$ plug (banana)) High (Force, Sense)
Low (Force, Sense)
Output terminals: 2 ea. (04 mm jack (banana))
High, Low
Maximum voltage: $\pm 200 \mathrm{~V}$
Maximum surge voltage: $\pm 10 \mathrm{kV}$
N1265A-041 Thermocouple, Type K, 2 ea

Feature

N1265A-041 can be connected to Thermocouple terminal inside the N1265A and enables B1505A to read out temperature at the top of the thermocouple.

Specifications

Connector: Type K plug
Length: 3000 mm
Temperature range: $-50^{\circ} \mathrm{C}$ to $+180^{\circ} \mathrm{C}$
N1265A-045 Container for Protection Adapter and Bias Tee

Feature

N1265A-045 can accommodate protection adapters and bias tee which are used with N1265A to make the measurement environment clean and safe

Specifications

Dimension: 420 mm W x 193 mm H x 565 mm D
Weight: 15 kg
Maximum superimposed load: 50 kg

N1267A High Voltage

Source Monitor Unit

/ High Current Source

 Monitor Unit Fast Switch
Feature

To change connection between HVSMU and HCSMU for Gallium Nitride current collapse measurement. Switch is controlled by a MCSMU. Note: The N1267A is only supported by the B1513B; the B1513A is not supported.
Note: N1267A doesn't support 40A or two HCSMU configuration. Note:
N1267A doesn't support N1265A.

Specifications

Input terminals:
HVSMU port, 1ea (HV triaxial)
HCSMU port, 1ea (Force: BNC,
Sense: Triaxial)
MCSMU port, 1ea (Force/Sense:
Triaxial)
GND port, 1ea (Triaxial)
Output terminals:
High (HV triaxial)
Low (BNC)
Maximum current: 20A
Maximum voltage: $\pm 3000 \mathrm{~V}$

N1269A Ultra High
 Voltage Connection Adapter

Feature

To make the connection simple and to protect measurement resources from unexpected surge when connecting UHVU to wafer prober.

Specifications

Input terminals:
Gate MCSMU Force, 1ea (Triaxial)
Gate MCSMU Sense, 1ea (Triaxial)
Chuck MCSMU Force, 1ea (Triaxial)
Chuck MCSMU Sense, 1ea
(Triaxial)
UHV Low, 1ea (HV triaxial)
Output terminals: 3ea (SHV)
Gate, Chuck, Source
Maximum voltage: $\pm 200 \mathrm{~V}$
Maximum surge voltage: $\pm 10 \mathrm{kV}$

Agilent EasyEXPERT Software

Functions

Operation mode:
Application test mode, Classic test mode, Tracer test mode (Curve tracer mode), Oscilloscope view, Quick test mode
Key features:

- Categorized and predefined application library
- Device definition
- Measurement parameter settings
- Save/Recall My Favorite Setups
- Define/customize application library
- Execute measurement (Single/Repeat/Append)
- Oscilloscope view
- Quick test execution
- Direct control
- Save/Recall measurement data and settings
- Test result data management
- Import/Export device definition, measurement settings, my favorite setup, measurement data, and application library
- Graph plot display/analysis/printing
- Workspace management
- Self-test, self calibration, diagnostics

Application library

Category:

Sample test definitions for the following applications. They are subject to change without notice. High Power Device, Utility

Measurement mode details

The Agilent B1505A supports the following measurement modes:

- IV spot
- IV staircase sweep
- IV pulsed spot
- IV pulsed sweep
- IV staircase sweep with pulsed bias
- IV Sampling
- IV High speed sampling
- Multi channel sweep*
- Multi channel pulse spot
- Multi channel pulse sweep
- CV sweep
- C-t sampling
- C-f sweep
- CV (DC bias) staircase sweep
- List sweep
- Linear search**
- Binary search**
* EasyEXPERT supports VAR1 and VAR1'.
**They are supported by FLEX command only.
Each SMU can sweep using VAR1
(primary sweep), VAR2 (secondary
sweep), or VAR1' (synchronous sweep).

VAR1

Primary sweep controls the staircase (dc or pulsed) voltage or current sweep.

Maximum number of steps: $\mathrm{N} 1=1001$

VAR2

Subordinate linear staircase or linear pulsed sweep. After primary sweep is completed, the VAR2 unit output is incremented.

Maximum number of steps: $\mathrm{N}_{2}=1001$ (condition: $1 \leq \mathrm{N}_{1} \times \mathrm{N}_{2} \leq 128128$)

VAR1

Staircase or pulse sweep synchronized with the VAR1 sweep. Sweep is made with a user specified ratio and offset value. VAR1' output is calculated as VAR1' = a \times VAR1 $+b$, where " a " is the user specified ratio and " b " is the user specified offset value.

CONST
A source unit can be set as a constant voltage or current source depending on the unit.

Sweep measurement time settings: Hold time:

0 to $655.35 \mathrm{~s}, 10 \mathrm{~ms}$ resolution
Delay time:
0 to $65.5350 \mathrm{~s}, 100 \mu \mathrm{~s}$ resolution
(Staircase sweep, multi channel sweep)
0 to $655.350 \mathrm{~s}, 100 \mu \mathrm{~s}$ resolution
(CV(DC bias) staircase sweep,
AC level sweep, frequency sweep)
Step delay time:
0 to $1 \mathrm{~s}, 100 \mu \mathrm{~s}$ resolution
Step output trigger delay time:
0 to (delay time) s, $100 \mu \mathrm{~s}$ resolution
Step measurement trigger delay time:
0 to $65.535 \mathrm{~s}, 100 \mu \mathrm{~s}$ resolution
Staircase sweep measurement mode: Forces swept voltage or current, and measures DC voltage or current. One channel can sweep current or voltage while up to ten channels can measure current or voltage. A second channel can be synchronized with the primary sweep channel as an additional voltage or current sweep source.

Number of steps: 1 to 1001
Sweep type: linear or logarithmic Sweep direction:

Single or double sweep
Pulsed sweep measurement mode:
Forces pulsed swept voltage or current, and measures DC voltage or current. A second channel can be programmed to output a staircase sweep voltage or current synchronized with the pulsed sweep output.

Staircase sweep with pulsed bias measurement mode:
Forces swept voltage or current, and measures DC voltage or current. A second channel can be programmed to output a pulsed bias voltage or current. A third channel can be synchronized with the primary sweep channel as an additional voltage or current sweep source.

Sampling (time domain)
measurement mode
Displays the time sampled voltage/
current data (by SMU) versus time.
Sampling points:
For linear sampling:
1 to 100,001/(number of channels)
For log sampling:
1 to $1+$ (number of data for 11 decades)
Sampling mode: linear, log
Sampling interval range:
$100 \mu \mathrm{~s}$ to $2 \mathrm{~ms}, 10 \mu \mathrm{~s}$ resolution
2 ms to $65.535 \mathrm{~s}, 1 \mathrm{~ms}$ resolution For $<2 \mathrm{~ms}$, the interval is $\geq 100 \mu \mathrm{~s}+20 \mu \mathrm{~s} x$ (num. of channels -1)
Hold time, initial wait time:
-90 ms to $-100 \mu \mathrm{~s}, 100 \mu \mathrm{~s}$ resolution
0 to $655.35 \mathrm{~s}, 10 \mathrm{~ms}$ resolution
Measurement time resolution: $100 \mu \mathrm{~s}$

Oscilloscope View (I/V):

Displays the time sampled current or voltage data for the HCSMU, MCSMU, HVSMU, UHCU, HVMCU and UHVU modules versus time. The window over which the measurement is being performed is also displayed, permitting verification of measurement timing over the output waveform.

Sampling interval :
$2 \mu \mathrm{~s}$ (HCSMU/MCSMU/UHCU/
HVMCU/UHVU)
$6 \mu \mathrm{~s}$ (HVSMU)
Sampling points: 2000 Sa (HCSMU/MCSMU/UHCU/ HVMCU/UHVU)
4000 Sa (HVSMU)
Marker function :
Read-out for each data channel
Resolution: $2 \mu \mathrm{~s}$
Data saving :
Numeric: Text/CSV/XMLSS Image: EMF/BMP/JPG/PNG

Search measurement mode:
Forces and measures voltage or current by using linear search method or binary search method.

Bias hold function

This function allows you to keep a source active between measurements. The source module will apply the specified bias between measurements when running classic tests inside an application test, in quick test mode, or during a repeated measurement. The function ceases as soon as these conditions end or when a measurement that does not use this function is started.

Current offset cancel

This function subtracts the offset current from the current measurement raw data, and returns the result as the measurement data. This function is used to compensate the error factor (offset current) caused by the measurement path such as the measurement cables, manipulators, or probe card.

Time stamp

The B1505A supports a time stamp function utilizing an internal quartz clock.

Resolution: $100 \mu \mathrm{~s}$
Other measurement
characteristics
Measurement Control: Single, Repeat, Append, and Stop

SMU Setting Capabilities: Limited auto ranging, voltage/ current compliance, power compliance, automatic sweep abort functions, self-test, and self-calibration

Arithmetic and analysis functions

User functions

Up to 20 user-defined functions can be defined using arithmetic expressions.

Measured data and pre-defined variables can be used in the computation. The results can be displayed on the LCD.

Arithmetic operators
$+,-,{ }^{*}, /,{ }^{\wedge}$, abs (absolute value), at (arc tangent), avg (averaging), cond (conditional evaluation), delta, diff (differential), exp (exponent), integ (integration), lgt (logarithm, base 10), log (logarithm, base e), mavg (moving average), max, min, sqrt, trigonometric function, inverse trigonometric function, and so on.

Physical constants

Keyboard constants are stored in memory as follows:
q: Electron Charge, 1.602177 E-19 C
k: Boltzman's Constant, 1.380658 E-23
$\varepsilon(\mathrm{e})$: Dielectric Constant of Vacuum, 8.854188 E-12

Engineering units

The following unit symbols are also available on the keyboard:
a $\left(10^{-18}\right), f\left(10^{-15}\right), p\left(10^{-12}\right), n\left(10^{-9}\right), u$ or $\mu\left(10^{-6}\right), \mathrm{m}\left(10^{-3}\right), \mathrm{k}\left(10^{3}\right), \mathrm{M}\left(10^{6}\right), \mathrm{G}$
$\left(10^{9}\right), \mathrm{T}\left(10^{12}\right), \mathrm{P}\left(10^{15}\right)$

Analysis capabilities

Overlay graph comparison
A graphics plot can be stored and overlaid.

Scale
Auto scale and zoom
Marker
Marker to min/max, interpolation, direct marker, and marker skip

Cursor
Direct cursor
Line
Two lines, normal mode, grad mode, tangent mode, and regression mode

Automatic analysis function
On a graphics plot, the markers and lines can be automatically located using the auto analysis setup. Parameters can be automatically determined using automatic analysis, user function, and read out functions.

Data variable display

Up to 20 user-defined parameters can be displayed on the graphics screen.

Analysis functions
Up to 20 user-defined analysis
functions can be defined using arithmetic expressions.

Measured data, pre-defined variables, and read out functions can be used in the computation. The results can be displayed on the LCD.

Read out functions
The read out functions are built-in functions for reading various values related to the marker, cursor, or line.

Graph plot
Display mode
Data display window can be printed.
Only X-Y graph can be printed.
Graph plot file
Graph plot can be stored as image
data to clip board or mass storage device.
File type: bmp, gif, png, emf
Output
Display modes
X-Y graph, list display, and parameter display
X-Y graph display
X -axis and up to eight Y -axis
Linear and log scale
Real time graph plotting

List display

Measurement data and calculated user function data are listed in conjunction with VAR1 step number or time domain sampling step number. Up to 20 data sets can be displayed.

Other functions

Import/export files.

File type:
Agilent EasyEXPERT format, XML-SS format, CSV format
Data storage
Hard disk drive, DVD-ROM/CD-R/
CD-RW drive
Interfaces
GPIB, Interlock, USB
(USB 2.0, front 2, rear 2), LAN (100BASE-TX/10BASE-T), trigger in/out, digital I/O
Trigger I/O
Only available using GPIB FLEX commands.

Trigger in/out synchronization pulses before and after setting and measuring dc voltage and current. Arbitrary trigger events can be masked or activated independently.

Supported external instruments
EasyEXPERT Standard edition:

- Supported by application tests: 4284A/E4980A, 81110A, 3458A

EasyEXPERT Plus edition:

- All external instruments supported by EasyEXPERT Standard edition

Furnished software

- Prober control execution files
- Desktop EasyEXPERT software with license-to-use for Standard edition
- 4155/56 setup file converter tool
(Supported operating systems: Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ XP
Professional (Service Pack 3 or later), Windows Vista Business (Service Pack 2 or later (32bit only)), and Windows 7 Professional (Service Pack 1 or later (32bit and 64bit)); Supported language: English (US))

General specifications

Temperature range
Operating: $+5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Storage: $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Humidity range ${ }^{1}$
Operating: 20\% to 70\% RH,
non-condensing
Storage: 10\% to 90% RH,
non-condensing
Storage: 20\% to 80\% RH,
non-condensing (N1268A)
Altitude
Operating: 0 m to $2,000 \mathrm{~m}(6,561 \mathrm{ft})$
Storage: 0 m to $4,600 \mathrm{~m}(15,092 \mathrm{ft})$
0 m to $2,000 \mathrm{~m}$ ($6,561 \mathrm{ft}$) (N1268A)
Power requirement
ac Voltage: 90 V to 264 V
Line Frequency: 47 Hz to 63 Hz
Maximum volt-amps (VA)
B1505A: 900 VA
N1258A: 65VA
N1259A-300: 35VA
N1265A: 400 VA
N1266A: 60 VA
N1268A: 350 VA
About measurement accuracy
RF electromagnetic field and SMU measurement accuracy:
SMU voltage and current measurement accuracy can be affected by RF electromagnetic field strengths greater than $3 \mathrm{~V} / \mathrm{m}$ in the frequency range of 80 MHz to 1 GHz . The extent of this effect depends upon how the instrument is positioned and shielded.

Induced RF field noise and SMU measurement accuracy: SMU voltage and current measurement accuracy can be affected by induced RF field noise strengths greater than 3 Vrms in the frequency range of 150 kHz to 80 MHz . The extent of this effect depends upon how the instrument is positioned and shielded.

Regulatory compliance
EMC:
IEC 61326-1 / EN 61326-1
Canada: ICES/NMB-001
AS/NZS CISPR 11
Safety:
IEC61010-1 / EN 61010-1
CAN/CSA-C22.2 No. 61010-1

Certification

CE, cCSAus, C-Tick

Dimensions

B1505A:
420 mm W x $330 \mathrm{~mm} \mathrm{H} \times 575 \mathrm{~mm}$ D
N1258A module selector:
330 mm W x $120 \mathrm{~mm} \mathrm{H} \times 410 \mathrm{~mm}$ D
N1259A test fixture:
420 mm W x $272 \mathrm{~mm} \mathrm{H} \times 410 \mathrm{~mm}$ D
N1260A High voltage bias-tee:
164 mm W x $53 \mathrm{~mm} \mathrm{H} \times 125 \mathrm{~mm}$ D
N1261A-001 HPSMU protection adapter (Triaxial output):
$80 \mathrm{~mm} \mathrm{~W} \times 40 \mathrm{~mm} \mathrm{H} \times 110 \mathrm{~mm}$ D
N1261A-002 GNDU protection adapter (BNC output):
$80 \mathrm{~mm} \mathrm{~W} \times 40 \mathrm{~mm} \mathrm{H} \times 110 \mathrm{~mm}$ D
N1261A-003 HPSMU protection adapter (HV triaxial output):
90 mm W x 40 mm H x 140 mm D
N1261A-004 GNDU protection adapter (SHV output):
$80 \mathrm{~mm} \mathrm{~W} \times 40 \mathrm{~mm} \mathrm{H} \times 125 \mathrm{~mm}$ D
N1262A resister box:
50 mm W x $40 \mathrm{~mm} \mathrm{H} \times 125 \mathrm{~mm}$ D
N1265A UHC expander / fixture: 420 mm W x 285 mm H x 575 mm D N1266A HVSMU current expander: 420 mm W x $75 \mathrm{~mm} \mathrm{H} \times 575 \mathrm{~mm}$ D N1267A HVSMU / HCSMU fast switch: TBD
N1268A UHV expander: 420 mm W x $222 \mathrm{~mm} \mathrm{H} x 482 \mathrm{~mm}$ D

Weight
B1505A (empty): 20 kg
B1511A: 1.1 kg
B1510A: 2.0 kg
B1512A: 2.1 kg
B1513B: 2.0 kg
B1514A: 1.3 kg
B1520A: 1.3 kg
N1258A: 5.0 kg
N1259A: 12.0 kg
N1260A: 0.6 kg
N1261A: 0.3 kg
N1262A: 0.3 kg
N1265A: 30 kg
N1266A: 10 kg
N1267A: TBD
N1268A: 18 kg
Furnished accessories
Measurement cables and adapter Triaxial cable for HPSMU, MPSMU and MCSMU, 2 ea.
HCSMU cable, 1 ea.
HCSMU Kelvin adapter, 1 ea.
HVSMU cable, 1 ea.
Interlock cable, 1 ea.
Ground unit cable, 1 ea.
Keyboard, 1 ea.
Mouse, 1 ea.
Stylus pen, 1 ea.
Power cable, 1 ea.
Manual CD-ROM, 1 ea.
Desktop EasyEXPERT CD-ROM, 1 ea.
License-to-use for Desktop EasyEXPERT
Standard edition,
1 license
Software CD-ROM (including utility tools)
Disk set for Agilent 4155B/4155C/4156B/4156C
firmware update, 1 set
SMU number label for the B1505A
installed with SMU, 1 sheet
N1258A : Digital I/O cable, 1 ea.
N1259A-300 : Digital I/O cable, 1 ea.
N1265A : Digital I/O cable, 1 ea.
N1266A : Digital I/O cable, 1 ea.
N1268A : Digital I/O cable, 1 ea.,
Interlock cable, 1 ea.

Order Information

Mainframe and modules	
B1505A	Power Device Analyzer/Curve Tracer mainframe
	Configure the following modules: High power SMU (HPSMU) Medium power SMU (MPSMU) High current SMU (HCSMU) Medium current SMU (MCSMU) High voltage SMU (HVSMU) Multi frequency CMU (MFCMU)
B1505A-015	1.5 m cable
B1505A-030	3.0 m cable
B1505A-050	50 Hz line frequency
B1505A-060	60 Hz line frequency
B1505A-A6J	ANSI Z540 compliant calibration
B1505A-UK6	Commercial calibration certificate with test data
B1505A-ABA	English documentation
B1505A-ABJ	Japanese documentation
B1500A-1CM	Rackmount kit
B1505A expanders/fixtures	
N1259A	Test fixture
N1259A-010	Inline package socket module (3 pin)
N1259A-011	Universal socket module
N1259A-012	Blank PTFE board
N1259A-013	Curve Tracer test adaptor socket module
N1259A-020	High voltage bias-tee
N1259A-021	$1 \mathrm{M} \Omega$ Resistor box
N1259A-022	$100 \mathrm{k} \Omega$ Resistor box
N1259A-030	$1 \mathrm{k} \Omega$ Resistor box for gate
N1259A-035	Universal R-Box
N1259A-300	Module selector
N1265A	UHC expander / fixture
N1265A-002	Blank Silicon Plate
N1265A-010	500 A Ultra High Current 3-pin Inline Package Socket Module
N1265A-011	Universal Socket Module
N1265A-013	Curve Tracer Test Adapter Socket Module
N1265A-015	1500 A Current Option
N1265A-035	Universal R-Box for N1265A
N1265A-040	10 kV Ultra High Voltage Gate Protection Adapter
N1265A-041	Thermocouple, Type K, 2 ea
N1265A-045	Container for Protection Adapter and Bias Tee
N1266A	High Voltage Source Monitor Unit Current Expander
N1267A	High Voltage Source Monitor Unit / High Current Source Monitor Unit Fast Switch
N1268A	Ultra High Voltage Expander
B1505A accessories	
16444A-001	Keyboard
16444A-002	Mouse

16444A-003	Stylus pen
N1253A-100	Digital I/O cable
N1253A-200	Digital I/O BNC box
N1254A-100	Ground unit Kelvin adapter
N1254A-101	Triaxial(m)-BNC(f)
N1254A-102	Triaxial(m)-BNC(m)
N1254A-103	Triaxial(m)-BNC(f)
N1254A-104	Triaxial(f)-BNC(m)
N1254A-105	Triaxial(f)-BNC(m)
N1254A-106	Triaxial(m)-BNC(f)
N1254A-107	Triaxial(m)-BNC(f)
N1254A-500	HV Jack Connector (Solder Type)
N1254A-501	HV Jack /Jack Adapter
N1254A-502	HV plug Connector(Solder Type)
N1254A-503	BNC Coax Cable Assy 1.5m(Open End)
N1254A-504	HVTriax Jack Coax Cable Assy 1.5m(Open End)
N1254A-505	HVTriax Plug Triax Cable Assy 1.5m (Open End)
N1254A-506	HVTriax Plug Coax Cable Assy 1.5m(Open End)
N1254A-507	HVTriax Plug Coax Cable Assy 1.5m
N1254A-508	Test Lead cable Black
N1254A-509	Test Lead cable Red
N1254A-510	Dolphin clip 2 ea. (red and black)
N1254A-511	Cable lag adapter 2 ea. (red and black)
N1254A-512	SHV Cable Assy 250mm
N1254A-513	SHV to Banana
N1254A-514	BNC-Plug? Plug
N1254A-515	BNC-Jack ?Plug-Jack
N1254A-516	BNC-Jack-Jack-Jack
N1254A-517	Adapter, Trixial Jack to Triaxial Plug
N1254A-518	SHV Cable 1.5 m
N1254A-520	10 kV Ultra High Voltage Open End Cable, 1 m.
N1254A-521	10 kV Ultra High Voltage Jack to Jack Adapter
N1254A-522	1500 A Ultra High Current Banana to Banana Cable, 2 ea.
N1254A-523	1500 A Ultra High Current Banana to Open End Cable, 1 m, 2 ea
N1254A-524	500 A Ultra High Current Prober System Cable
N1258A	Module selector
N1260A	High voltage bias-tee
N1261A	Protection adapter
N1262A	Resistor box
N1262A-020	Universal R-Box, Triaxial
N1262A-021	Universal R-Box, HV Triaxial to SHV
N1262A-023	Universal R-Box for Ultra High Voltage
N1262A-036	50 Ohm Termination Adapter
SMU cables/accessories	
16493S-001	HCSMU cable (1.5 m)
16493S-002	HCSMU cable (3 m)

Order Information

16493S-010	HCSMU Kelvin adapter
16493S-011	HCSMU non-Kelvin adapter
16493S-020	Dual HCSMU Kelvin combination adapter
16493S-021	Dual HCSMU combination adapter
16493T-001	High voltage triaxial cable (1.5 m)
16493T-002	High voltage triaxial cable (3 m)
$16493 \mathrm{U}-001$	High current BNC cable (1.5 m)
16493U-002	High current BNC cable (3 m)
16494A-001	Triaxial cable (1.5 m)
16494A-002	Triaxial cable (3 m)
16493K-001	Kelvin triaxial cable (1.5 m)
16493K-002	Kelvin triaxial cable (3 m)
16493 V -001	10 kV Ultra High Voltage Cable, 1.5 m
16493V-002	10 kV Ultra High Voltage Cable, 3 m
N1269A	Ultra High Voltage Connection Adapter
CMU accessories	
N1300A-001	CMU cable (1.5 m)
N1300A-002	CMU cable (3 m)
Other accessories	
16493G-001	Digital I/O cable (1.5 m)
16493G-002	Digital I/O cable (3 m)
16493J-001	Interlock cable (1.5 m)
16493J-002	Interlock cable (3 m)
16493L-001	GNDU cable (1.5 m)
16493L-002	GNDU cable (3 m)

Retrofit and upgrade kits	
B1505AU	Upgrade kit for B1505A
B1505AU-001	Conversion kit from B1500A to B1505A
B1505AU-010	High power source monitor unit (B1510A)
B1505AU-011	Medium power source monitor unit (B1511A)
B1505AU-012	High current source monitor unit (B1512A)
B1505AU-013	High voltage source monitor unit (B1513B)
B1505AU-014	Medium current source monitor unit (B1514A)
B1505AU-020	Multi frequency capacitance measurement unit (B1520A)
B1505AU-SWS	EasyEXPERT Extension support and subscription
N1259AU	Upgrade kit for N1259A
N1265AU	Upgrade kit for N1265A
Package solution	
B1505AP	Pre-configured Power Device Analyzer/Curve Tracer (B1505A w/ modules/fixture)
B1505AP-H20	$3 \mathrm{kV} / 20 \mathrm{~A} /$ Fixture Pack
B1505AP-H21	$3 \mathrm{kV} / 20 \mathrm{~A} / \mathrm{C}$-V / Fixture Pack
B1505AP-H50	$3 \mathrm{kV} / 500 \mathrm{~A} /$ Fixture Pack
B1505AP-H70	$3 \mathrm{kV} / 500 \mathrm{~A} /$ / C-V / Fixture Pack
B1505AP-H71	$3 \mathrm{kV} / 1500 \mathrm{~A} /$ / C-V / Fixture Pack
B1505AP-U50	$10 \mathrm{kV} / 500 \mathrm{~A} /$ Fixture Pack
B1505AP-U70	$10 \mathrm{kV} / 1500 \mathrm{~A} /$ Fixture Pack

www.agilent.com
www.agilent.com/find/b1505a

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

Agilent Channel Partners

uww.agilent.com/find/channelpartners
Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

Agilent B1500A Semiconductor Device Analyzer
www.agilent.com/find/B1500A

Agilent Advantage Services is committed to your success throughout your equipment's lifetime. To keep you competitive, we continually invest in tools and processes that speed up calibration and repair and reduce your cost of ownership. You can also use Infoline Web Services to manage equipment and services more effectively. By sharing our measurement and service expertise, we help you create the products that change our world.
www.agilent.com/find/advantageservices

Agilent B2900A Series Precision Source/Measure Unit
www.agilent.com/find/B2900A

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus
Americas

Canada	$(877) 8944414$
Brazil	$(11) 41973600$
Mexico	018005064800
United States	$(800) 8294444$

Asia Pacific

Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	$0120(421) 345$
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Other AP Countries	$(65) 3758100$

Europe \& Middle East

Belgium	$32(0) 24049340$
Denmark	4545801215
Finland	$358(0) 108552100$
France	0825010700^{*}
	${ }^{*} 0.125 € /$ minute
Germany	$49(0) 70314646333$
Ireland	1890924204
Israel	$972-3-9288-504 / 544$
Italy	390292608484
Netherlands	$31(0) 205472111$
Spain	$34(91) 6313300$
Sweden	$0200-882255$
United Kingdom	$44(0) 1189276201$

For other unlisted countries:
www.agilent.com/find/contactus
Revised: January 6, 2011
Product specifications and descriptions in this document subject to change without notice.
© Agilent Technologies, Inc. 2012
Published in USA, April 24, 2012
5990-3853EN

[^0]: 1. Supplemental characteristics over 1.1 A .
